
The number of straight lines joining 8 points on a circle is______.
A. $8$
B. $16$
C. $24$
D. $28$
Answer
163.2k+ views
Hint: Any two points can be joined to create a straight line. As a result, the number of straight lines that can be generated is a combination of choosing two points from 8 points on the circle.
Complete step by step solution:
We are given that all 8 points are on the circle. Hence these points are not collinear.
A straight line can be drawn by joining any 2 points.
Hence, the number of straight lines formed will be equal to the number of ways 2 points can be chosen from the 8 points on the circle.
We know that the number of ways of choosing r objects from n objects is given by $n{C_r}$.
Therefore, the number of ways we can choose 2 points from 8 points is given by $8{C_2}$
So, the number of straight lines that can be formed by joining 8 points is $8{C_2}$
Since $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ where $n! = n \times (n - 1) \times (n - 2) \times ...... \times 3 \times 2 \times 1$ we have,
$8{C_2} = \dfrac{{8!}}{{2!\left( {8 - 2} \right)!}}$
$ \Rightarrow 8{C_2} = \dfrac{{8!}}{{2!6!}}$
$ \Rightarrow 8{C_2} = \dfrac{{8 \times 7}}{2}$
$ \Rightarrow 8{C_2} = 28$
Option ‘D’ is correct
Note: In order to solve the given question, one must know to form and calculate combinations.
The number of ways of selecting r objects from n objects is given by $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ where $n! = n \times (n - 1) \times (n - 2) \times ...... \times 3 \times 2 \times 1$.
One must also note that a straight line is formed by joining two points.
Complete step by step solution:
We are given that all 8 points are on the circle. Hence these points are not collinear.
A straight line can be drawn by joining any 2 points.
Hence, the number of straight lines formed will be equal to the number of ways 2 points can be chosen from the 8 points on the circle.
We know that the number of ways of choosing r objects from n objects is given by $n{C_r}$.
Therefore, the number of ways we can choose 2 points from 8 points is given by $8{C_2}$
So, the number of straight lines that can be formed by joining 8 points is $8{C_2}$
Since $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ where $n! = n \times (n - 1) \times (n - 2) \times ...... \times 3 \times 2 \times 1$ we have,
$8{C_2} = \dfrac{{8!}}{{2!\left( {8 - 2} \right)!}}$
$ \Rightarrow 8{C_2} = \dfrac{{8!}}{{2!6!}}$
$ \Rightarrow 8{C_2} = \dfrac{{8 \times 7}}{2}$
$ \Rightarrow 8{C_2} = 28$
Option ‘D’ is correct
Note: In order to solve the given question, one must know to form and calculate combinations.
The number of ways of selecting r objects from n objects is given by $n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ where $n! = n \times (n - 1) \times (n - 2) \times ...... \times 3 \times 2 \times 1$.
One must also note that a straight line is formed by joining two points.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
