
The mass of ions deposited during a given interval of time in the process of electrolysis depends on
A. The current
B. The resistance
C. The temperature
D. The electric power
Answer
221.4k+ views
Hint: Electrolysis is the process in which electric current is sent through an electrolyte and flow of ions occurs. Basically, some ions get deposited on both sides of the electrode. In this question we have to find that the mass of ions deposited during electrolysis depends on what.
Formula used: We have,
Mass of ion deposited, $m \propto q$
Where $\mathrm{q}$ is charged.
This equation can be simplified as:
$m \propto i t$
Where $\mathrm{i}$ is the current and $\mathrm{t}$ is the time of flow of charge.
Complete Step by Step Answer:
Electrolysis is usually described as decomposition of electrolytes to its own ions. There will be a negative electrode called cathode and positive electrode called anode. They are connected by a voltage source. This setup is dipped in electrolyte. After sometime positive ions get deposited on cathode and negative electrons get deposited on anode.
In electrolysis we have an equation saying that mass of ion deposited is directly proportional to charge flowing and we know that current is the rate of flow of current. This is called Faraday's first law of electrolysis. Therefore, in electrolysis the mass of ions deposited during an interval will depend on current passing.
That is,
Mass of ion deposited, $m \propto q \Rightarrow m \propto$ it
Where $q$ is the charge, $i$ is the current and $t$ is the time of flow of charge.
Therefore, the answer is option A.
Note: This equation comes from Faraday's first law of electrolysis. Faraday' first law of electrolysis states that the mass of the substance deposited at any electrode is directly proportional to the quantity of current or charge passed.
Formula used: We have,
Mass of ion deposited, $m \propto q$
Where $\mathrm{q}$ is charged.
This equation can be simplified as:
$m \propto i t$
Where $\mathrm{i}$ is the current and $\mathrm{t}$ is the time of flow of charge.
Complete Step by Step Answer:
Electrolysis is usually described as decomposition of electrolytes to its own ions. There will be a negative electrode called cathode and positive electrode called anode. They are connected by a voltage source. This setup is dipped in electrolyte. After sometime positive ions get deposited on cathode and negative electrons get deposited on anode.
In electrolysis we have an equation saying that mass of ion deposited is directly proportional to charge flowing and we know that current is the rate of flow of current. This is called Faraday's first law of electrolysis. Therefore, in electrolysis the mass of ions deposited during an interval will depend on current passing.
That is,
Mass of ion deposited, $m \propto q \Rightarrow m \propto$ it
Where $q$ is the charge, $i$ is the current and $t$ is the time of flow of charge.
Therefore, the answer is option A.
Note: This equation comes from Faraday's first law of electrolysis. Faraday' first law of electrolysis states that the mass of the substance deposited at any electrode is directly proportional to the quantity of current or charge passed.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

