
The magnetic field to a small magnetic dipole of magnetic moment $M$ , at distance $r$ from the centre on the equatorial line is given by (in M.K.S. system)
A. $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^2}}}$
B. $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$
C. $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2M}}{{{r^2}}}$
D. $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2M}}{{{r^3}}}$
Answer
162.9k+ views
Hint:
Magnetic dipole is an arrangement of two different magnetic poles of equal strength separated by a small distance. The magnetic field due to a small magnet at any point on the equatorial line is half of the magnetic field at a point on the axial line of that magnet at the same distance.
Formula used:
The formula used in the solution of this problem is: -
Magnetic field on equatorial line, ${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2} + {l^2}} \right)}^{\dfrac{3}{2}}}}}$
Magnetic field on axial line, ${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2} - {l^2}} \right)}^2}}}$
Complete step by step solution:
We know that the magnetic field from the centre on the equatorial line of a bar magnet is given by: -
${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2} + {l^2}} \right)}^{\dfrac{3}{2}}}}}$ … (1)
And the magnetic field from the centre on the axial line of a bar magnet is given by: -
${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2} - {l^2}} \right)}^2}}}$ … (2)
where $M$ = magnetic dipole moment
and $l$ = length of a magnetic dipole.
Since the length of a magnetic dipole is very small according to the question i.e., $l < < < r$therefore, $l$ is negligible.
From eq. (1)
${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2}} \right)}^{\dfrac{3}{2}}}}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$
and, from eq. (2)
${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2}} \right)}^2}}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2M}}{{{r^3}}}$
Also, we can write as: - ${B_{axial}} = 2{B_{equitorial}}$
Thus, the magnetic field on the equatorial line is given by $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$ in M.K.S. system.
Hence, the correct option is (B) $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$ .
Therefore, the correct option is B.
Note:
The component of the magnetic moment which can be represented by a magnetic dipole. Magnetic dipole is a magnetic analogue of electric dipole. Only one exception is there. a magnetic monopole which is a magnetic analogue of electric charge are not found in nature.
Magnetic dipole is an arrangement of two different magnetic poles of equal strength separated by a small distance. The magnetic field due to a small magnet at any point on the equatorial line is half of the magnetic field at a point on the axial line of that magnet at the same distance.
Formula used:
The formula used in the solution of this problem is: -
Magnetic field on equatorial line, ${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2} + {l^2}} \right)}^{\dfrac{3}{2}}}}}$
Magnetic field on axial line, ${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2} - {l^2}} \right)}^2}}}$
Complete step by step solution:
We know that the magnetic field from the centre on the equatorial line of a bar magnet is given by: -
${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2} + {l^2}} \right)}^{\dfrac{3}{2}}}}}$ … (1)
And the magnetic field from the centre on the axial line of a bar magnet is given by: -
${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2} - {l^2}} \right)}^2}}}$ … (2)
where $M$ = magnetic dipole moment
and $l$ = length of a magnetic dipole.
Since the length of a magnetic dipole is very small according to the question i.e., $l < < < r$therefore, $l$ is negligible.
From eq. (1)
${B_{equitorial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{{\left( {{r^2}} \right)}^{\dfrac{3}{2}}}}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$
and, from eq. (2)
${B_{axial}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2Mr}}{{{{\left( {{r^2}} \right)}^2}}} = \dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{{2M}}{{{r^3}}}$
Also, we can write as: - ${B_{axial}} = 2{B_{equitorial}}$
Thus, the magnetic field on the equatorial line is given by $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$ in M.K.S. system.
Hence, the correct option is (B) $\dfrac{{{\mu _o}}}{{4\pi }} \times \dfrac{M}{{{r^3}}}$ .
Therefore, the correct option is B.
Note:
The component of the magnetic moment which can be represented by a magnetic dipole. Magnetic dipole is a magnetic analogue of electric dipole. Only one exception is there. a magnetic monopole which is a magnetic analogue of electric charge are not found in nature.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
