
The magnet of a vibration magnetometer is heated so as to reduce its magnetic moment by $19\% $. By doing this the periodic time of the magnetometer will:
A. Increase by $19\% $
B. Decrease by $19\% $
C. Increase by $11\% $
D. Decrease by $21\% $
Answer
219.9k+ views
Hint: A magnetometer is a device that measures the direction, strength, and change of a magnetic field at a specific location (on or near Earth, or in space). It primarily measures magnetic intensity and fields.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

