
The magnet of a vibration magnetometer is heated so as to reduce its magnetic moment by $19\% $. By doing this the periodic time of the magnetometer will:
A. Increase by $19\% $
B. Decrease by $19\% $
C. Increase by $11\% $
D. Decrease by $21\% $
Answer
164.1k+ views
Hint: A magnetometer is a device that measures the direction, strength, and change of a magnetic field at a specific location (on or near Earth, or in space). It primarily measures magnetic intensity and fields.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
