
The locus of a point which divides a chord of slope 2 of the parabola \[{{y}^{2}}=4x\] internally in the ratio 1:2 is
(a) \[{{\left( y+\dfrac{4}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)\]
(b) \[{{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)\]
(c) \[{{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x+\dfrac{2}{9} \right)\]
(d) \[{{\left( y+\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x+\dfrac{2}{9} \right)\]
Answer
233.1k+ views
Hint: To find the locus of point which divides a chord of given slope of the parabola internally in the ratio 1:2, write the equation of chord joining any two points of the parabola and then find the point which divides these two points on the parabola internally in the ratio 1:2.
We have a parabola \[{{y}^{2}}=4x\].We have to find the locus of point on a chord of slope 2 which divides the chord internally in the ratio 1:2.
Let’s assume that there are two points on parabola \[P\left( {{t}_{1}} \right)\]and\[Q\left( {{t}_{2}}
\right)\].
The equation of chord of the parabola \[{{y}^{2}}=4ax\] joining these two points \[P\left( {{t}_{1}}
\right)\] and \[Q\left( {{t}_{2}} \right)\]is\[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We observe that \[a=1\] in our case.
By substituting the value, we have \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2{{t}_{1}}{{t}_{2}}\]
Dividing the equation by \[\left( {{t}_{1}}+{{t}_{2}} \right)\], we get
\[y=\dfrac{2x}{{{t}_{1}}+{{t}_{2}}}+\dfrac{2{{t}_{1}}{{t}_{2}}}{{{t}_{1}}+{{t}_{2}}}\]
We know the slope of this chord is 2, thus, \[\dfrac{2}{{{t}_{1}}+{{t}_{2}}}=2\]
\[\Rightarrow {{t}_{1}}+{{t}_{2}}=1\]
\[\Rightarrow {{t}_{2}}=1-{{t}_{1}}\] \[-\left( 1 \right)\]

Now, we know that the formula of point which internally divides two points \[\left( a,b \right)\]and \[\left( c,d \right)\]in the ratio \[m:n\] is\[\left( \dfrac{am+cn}{m+n},\dfrac{bm+dn}{m+n} \right)\].
If a point divides any two points externally, then we replace + by - in the above formula.
So, let’s assume that the locus of our point which divides the chord with end points\[\left( t_{1}^{2},2{{t}_{1}} \right)\]and \[\left( t_{2}^{2},2{{t}_{2}} \right)\] in the ratio \[1:2\] is \[\left( x,y \right)\]
\[\Rightarrow \left( x,y \right)=\left( \dfrac{t_{2}^{2}+2t_{1}^{2}}{3},\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3} \right)\]
\[\Rightarrow x=\dfrac{t_{2}^{2}+2t_{1}^{2}}{3}\] and \[y=\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3}\]
Substituting using equation \[\left( 1 \right)\],we get
\[\Rightarrow x=\dfrac{{{\left( 1-{{t}_{1}} \right)}^{2}}+2t_{1}^{2}}{3}=\dfrac{3t_{1}^{2}+1-2{{t}_{1}}}{3}\]\[=t_{1}^{2}+\dfrac{1}{3}-\dfrac{2{{t}_{1}}}{3}\] \[\left( 2 \right)\]
\[\Rightarrow y=\dfrac{2\left( 1-{{t}_{1}} \right)+4{{t}_{1}}}{3}=\dfrac{2+2{{t}_{1}}}{3}\]
Solving \[{{t}_{1}}\] in terms of \[y\] by multiplying the equation by 3, subtracting 2 and then dividing by 2 on both sides, we get \[\dfrac{3y-2}{2}={{t}_{1}}\] \[\left( 3 \right)\]
Substituting using equation \[\left( 3 \right)\]in equation\[\left( 2 \right)\], we get\[x={{\left( \dfrac{3y}{2}-1 \right)}^{2}}+\dfrac{1}{3}-\left( \dfrac{3y-2}{3} \right)=\dfrac{9{{y}^{2}}}{4}+1-3y+\dfrac{1}{3}-y+\dfrac{2}{3}=\dfrac{9{{y}^{2}}}{4}-4y+2\].
Multiplying the equation by \[\dfrac{4}{9}\], we get \[\dfrac{4x}{9}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{8}{9}\]
Subtracting \[\dfrac{8}{81}\]from both side of the equation, we get \[\dfrac{4x}{9}-\dfrac{8}{81}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{64}{81}\]
Rearranging the terms, we get \[\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)={{\left( y-\dfrac{8}{9} \right)}^{2}}\]
Hence, the correct answer is \[{{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)\]
Option (B) is the correct answer.
Note: We can also write the equation of chord in terms of a variable slope and then use it to find the locus of point which divides the chord in the ratio 1:2.
We have a parabola \[{{y}^{2}}=4x\].We have to find the locus of point on a chord of slope 2 which divides the chord internally in the ratio 1:2.
Let’s assume that there are two points on parabola \[P\left( {{t}_{1}} \right)\]and\[Q\left( {{t}_{2}}
\right)\].
The equation of chord of the parabola \[{{y}^{2}}=4ax\] joining these two points \[P\left( {{t}_{1}}
\right)\] and \[Q\left( {{t}_{2}} \right)\]is\[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We observe that \[a=1\] in our case.
By substituting the value, we have \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2{{t}_{1}}{{t}_{2}}\]
Dividing the equation by \[\left( {{t}_{1}}+{{t}_{2}} \right)\], we get
\[y=\dfrac{2x}{{{t}_{1}}+{{t}_{2}}}+\dfrac{2{{t}_{1}}{{t}_{2}}}{{{t}_{1}}+{{t}_{2}}}\]
We know the slope of this chord is 2, thus, \[\dfrac{2}{{{t}_{1}}+{{t}_{2}}}=2\]
\[\Rightarrow {{t}_{1}}+{{t}_{2}}=1\]
\[\Rightarrow {{t}_{2}}=1-{{t}_{1}}\] \[-\left( 1 \right)\]

Now, we know that the formula of point which internally divides two points \[\left( a,b \right)\]and \[\left( c,d \right)\]in the ratio \[m:n\] is\[\left( \dfrac{am+cn}{m+n},\dfrac{bm+dn}{m+n} \right)\].
If a point divides any two points externally, then we replace + by - in the above formula.
So, let’s assume that the locus of our point which divides the chord with end points\[\left( t_{1}^{2},2{{t}_{1}} \right)\]and \[\left( t_{2}^{2},2{{t}_{2}} \right)\] in the ratio \[1:2\] is \[\left( x,y \right)\]
\[\Rightarrow \left( x,y \right)=\left( \dfrac{t_{2}^{2}+2t_{1}^{2}}{3},\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3} \right)\]
\[\Rightarrow x=\dfrac{t_{2}^{2}+2t_{1}^{2}}{3}\] and \[y=\dfrac{2{{t}_{2}}+4{{t}_{1}}}{3}\]
Substituting using equation \[\left( 1 \right)\],we get
\[\Rightarrow x=\dfrac{{{\left( 1-{{t}_{1}} \right)}^{2}}+2t_{1}^{2}}{3}=\dfrac{3t_{1}^{2}+1-2{{t}_{1}}}{3}\]\[=t_{1}^{2}+\dfrac{1}{3}-\dfrac{2{{t}_{1}}}{3}\] \[\left( 2 \right)\]
\[\Rightarrow y=\dfrac{2\left( 1-{{t}_{1}} \right)+4{{t}_{1}}}{3}=\dfrac{2+2{{t}_{1}}}{3}\]
Solving \[{{t}_{1}}\] in terms of \[y\] by multiplying the equation by 3, subtracting 2 and then dividing by 2 on both sides, we get \[\dfrac{3y-2}{2}={{t}_{1}}\] \[\left( 3 \right)\]
Substituting using equation \[\left( 3 \right)\]in equation\[\left( 2 \right)\], we get\[x={{\left( \dfrac{3y}{2}-1 \right)}^{2}}+\dfrac{1}{3}-\left( \dfrac{3y-2}{3} \right)=\dfrac{9{{y}^{2}}}{4}+1-3y+\dfrac{1}{3}-y+\dfrac{2}{3}=\dfrac{9{{y}^{2}}}{4}-4y+2\].
Multiplying the equation by \[\dfrac{4}{9}\], we get \[\dfrac{4x}{9}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{8}{9}\]
Subtracting \[\dfrac{8}{81}\]from both side of the equation, we get \[\dfrac{4x}{9}-\dfrac{8}{81}={{y}^{2}}-\dfrac{16y}{9}+\dfrac{64}{81}\]
Rearranging the terms, we get \[\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)={{\left( y-\dfrac{8}{9} \right)}^{2}}\]
Hence, the correct answer is \[{{\left( y-\dfrac{8}{9} \right)}^{2}}=\dfrac{4}{9}\left( x-\dfrac{2}{9} \right)\]
Option (B) is the correct answer.
Note: We can also write the equation of chord in terms of a variable slope and then use it to find the locus of point which divides the chord in the ratio 1:2.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

