
The locus of a point equidistance from two given points $a$ and $b$ is given by
A. $\left[ r-\dfrac{1}{2}(a+b) \right]\cdot (a-b)=0$
B. $\left[ r-\dfrac{1}{2}(a-b) \right]\cdot (a+b)=0$
C. $\left[ r-\dfrac{1}{2}(a+b) \right]\cdot (a+b)=0$
D. $\left[ r-\dfrac{1}{2}(a-b) \right]\cdot (a-b)=0$
Answer
162.3k+ views
Hint: In this question, we are to find the locus of a point equidistance from two given points. In order to find this, the given position vectors are used, and applying the dot product, we get the required equidistance.
Formula Used:If $a$ and $b$ are the position vectors of the points $A$, $B$ respectively, then the position vector of the midpoint of $\overline{AB}$ is $\dfrac{a+b}{2}$.
Here $a$ and $b$are two non-zero vectors, then
$(a,b)=90{}^\circ \Leftrightarrow a\cdot b=0$
Complete step by step solution:Consider given points as $A$ and $B$ and their position vectors are $a$ and $b$ respectively.
To find the locus of the equidistance from the given points, the mid-point of the given points is to be calculated.
I.e., the position vector of the mid-point of $\overline{AB}$ is
$M=\dfrac{1}{2}(a+b)$
Consider a point $P$ which is the locus of a point equidistance from the given points.
So, we can draw a perpendicular line from the mid-point of the line $\overline{AB}$ .
I.e., $\overline{PM}$ whose position vectors is $[r-\dfrac{1}{2}(a+b)]$.
Thus, we can write,
\[\begin{align}
& \overrightarrow{PM}\bot \overrightarrow{BA} \\
& \Rightarrow \overrightarrow{PM}\cdot \overrightarrow{BA}=0\text{ }...(1) \\
\end{align}\]
On substituting the position vectors, we get
$[r-\dfrac{1}{2}(a+b)]\cdot (a-b)=0$
Option ‘A’ is correct
Note: Here we need to remember that, the given points are position vectors. So, we need to apply the vector theory and we can able to find the required locus of the point equidistance from the given points.
Formula Used:If $a$ and $b$ are the position vectors of the points $A$, $B$ respectively, then the position vector of the midpoint of $\overline{AB}$ is $\dfrac{a+b}{2}$.
Here $a$ and $b$are two non-zero vectors, then
$(a,b)=90{}^\circ \Leftrightarrow a\cdot b=0$
Complete step by step solution:Consider given points as $A$ and $B$ and their position vectors are $a$ and $b$ respectively.
To find the locus of the equidistance from the given points, the mid-point of the given points is to be calculated.
I.e., the position vector of the mid-point of $\overline{AB}$ is
$M=\dfrac{1}{2}(a+b)$
Consider a point $P$ which is the locus of a point equidistance from the given points.
So, we can draw a perpendicular line from the mid-point of the line $\overline{AB}$ .
I.e., $\overline{PM}$ whose position vectors is $[r-\dfrac{1}{2}(a+b)]$.
Thus, we can write,
\[\begin{align}
& \overrightarrow{PM}\bot \overrightarrow{BA} \\
& \Rightarrow \overrightarrow{PM}\cdot \overrightarrow{BA}=0\text{ }...(1) \\
\end{align}\]
On substituting the position vectors, we get
$[r-\dfrac{1}{2}(a+b)]\cdot (a-b)=0$
Option ‘A’ is correct
Note: Here we need to remember that, the given points are position vectors. So, we need to apply the vector theory and we can able to find the required locus of the point equidistance from the given points.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
