
The linear charge density of the circumference of a circle of radius $a$ varies as $\lambda = {\lambda _0}\cos \theta $. The total charge on it is …………………
A) $Zero$
B) $Infinite$
C) $\pi a{\lambda _0}$
D) $2\pi a$
Answer
217.5k+ views
Hint: To find the solution of this question, first of all we need to integrate the equation of linear charge density. After that we need to put the given value of $\lambda $and solve the equation. The solution of the equation will give the value of total charge on it. Also, we need to find the value of the angle $\theta $by which the radius of the circle is varying.
Complete step by step solution:
We know that linear charge density is given by, $\lambda = \dfrac{{dq}}{{dx}}$ …………………(i)
Where, we know that $\lambda $ is the charge density.
Also, $dq$ is the small amount of charge present on the circumference of the circle,
$dx$ is the circumferential length on which charge is distributed
Equation (i) can be written as,
$dq = \lambda dx$
Now, we need to integrate the above equation.
$\smallint dq = \smallint _0^{2\pi }\lambda dx$
$ \Rightarrow q = \smallint _0^{2\pi }{\lambda _0}\cos \theta dx$…………(ii)
We already know that, $\theta = \dfrac{{arc}}{{radius}}$
$ \Rightarrow d\theta = \dfrac{{dx}}{a}$
Or, $dx = ad\theta $
Now, putting the value of $dx$in equation (ii), we get,
$q = {\lambda _0}\smallint _0^{2\pi }\cos \theta .ad\theta $
$ \Rightarrow q = {\lambda _0}a\smallint _0^{2\pi }\cos \theta .d\theta $
$ \Rightarrow q = {\lambda _{_0}}a[\sin \theta ]_0^{2\pi }$
$ \Rightarrow q = {\lambda _0}a[\sin 2\pi - \sin 0]$
$ \Rightarrow q = {\lambda _0}a[0 - 0]$ $[\because \sin 2\pi = o]$
$ \Rightarrow q = {\lambda _0}a[0]$
$\therefore q = 0$
Hence, option (A), i.e. zero is the correct solution for the question.
Note: As, in the given question, we have to find the value of total charge, when linear charge density is given. Linear charge density is the quantity of charge per unit length and is measured in coulombs per meter, at any point on a line charge distribution. Charge can either be positive or negative, since electric charge can be either positive or negative. One should always be clear with the formula of linear charge density. We should not be confused with the surface charge density or volumetric charge density.
Surface charge density, $\sigma = qA$
Volumetric charge density, $\rho = \dfrac{q}{V}$.
Complete step by step solution:
We know that linear charge density is given by, $\lambda = \dfrac{{dq}}{{dx}}$ …………………(i)
Where, we know that $\lambda $ is the charge density.
Also, $dq$ is the small amount of charge present on the circumference of the circle,
$dx$ is the circumferential length on which charge is distributed
Equation (i) can be written as,
$dq = \lambda dx$
Now, we need to integrate the above equation.
$\smallint dq = \smallint _0^{2\pi }\lambda dx$
$ \Rightarrow q = \smallint _0^{2\pi }{\lambda _0}\cos \theta dx$…………(ii)
We already know that, $\theta = \dfrac{{arc}}{{radius}}$
$ \Rightarrow d\theta = \dfrac{{dx}}{a}$
Or, $dx = ad\theta $
Now, putting the value of $dx$in equation (ii), we get,
$q = {\lambda _0}\smallint _0^{2\pi }\cos \theta .ad\theta $
$ \Rightarrow q = {\lambda _0}a\smallint _0^{2\pi }\cos \theta .d\theta $
$ \Rightarrow q = {\lambda _{_0}}a[\sin \theta ]_0^{2\pi }$
$ \Rightarrow q = {\lambda _0}a[\sin 2\pi - \sin 0]$
$ \Rightarrow q = {\lambda _0}a[0 - 0]$ $[\because \sin 2\pi = o]$
$ \Rightarrow q = {\lambda _0}a[0]$
$\therefore q = 0$
Hence, option (A), i.e. zero is the correct solution for the question.
Note: As, in the given question, we have to find the value of total charge, when linear charge density is given. Linear charge density is the quantity of charge per unit length and is measured in coulombs per meter, at any point on a line charge distribution. Charge can either be positive or negative, since electric charge can be either positive or negative. One should always be clear with the formula of linear charge density. We should not be confused with the surface charge density or volumetric charge density.
Surface charge density, $\sigma = qA$
Volumetric charge density, $\rho = \dfrac{q}{V}$.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

