
The kinetic energy of the electron in an orbit of radius $r$ in hydrogen atom is ($e = $ electronic charge)
A. $\dfrac{{{e^2}}}{r}$
B. $\dfrac{{{e^2}}}{{2r}}$
C. $\dfrac{{{e^2}}}{{4r}}$
D. $\dfrac{{{e^2}}}{{2{r^2}}}$
Answer
439k+ views
Hint Following the Bohr’s atomic model we can calculate the velocity of an electron in a hydrogen atom. Then substitute the value of this velocity in the kinetic energy formula.
Formulas used
$\dfrac{{m{v^2}}}{r} = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{{r^2}}}$ where $m$ is the mass of the electron, $v$ is its velocity, $r$ is the radius of its orbit and $e$ is its charge.
$T = \dfrac{1}{2}m{v^2}$ where $T$ is the kinetic energy.
Complete step by step solution
To calculate the K.E of electrons in an orbit of a hydrogen atom, we have to gain a knowledge of Bohr’s atomic model which put forward the following postulates:
The electrons revolve around the nucleus in a circular orbit under the influence of Coulomb force. These discrete orbits are called stationary states.
Corresponding to each of the stationary states, the orbital angular momentum of the electron $mvr$ is equal to an integral multiple of $\hbar $, i.e. $mvr = n\hbar $
Radiation of energy $h\nu $ is either emitted or absorbed when there is a transition of an electron from one energy state to another.
So, $
mvr = n\hbar \\
\Rightarrow v = \dfrac{{n\hbar }}{{mr}} \\
$
To maintain the stability of the circular orbit of the electrons, the Coulomb’s force of attraction is balanced by the centrifugal force
$\dfrac{{m{v^2}}}{r} = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{{r^2}}}$
$ \Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}mr}}$
The formula for kinetic energy is $\dfrac{1}{2}m{v^2}$
Substituting the value of ${v^2}$ in this expression we get,
$
T = \dfrac{1}{2}m \times \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}mr}} \\
\Rightarrow T = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{2r}} \\
$
Since the factor $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is a dimensionless quantity, so we can say that the kinetic energy is proportional to $\dfrac{{{e^2}}}{{2r}}$
Hence, the correct option is B.
Note Even though Bohr revolutionized the whole quantum theory with his atomic model, there were some drawbacks to this. The atomic model was primarily for hydrogen atoms and couldn’t elaborate the spectra of multi-electron systems and was unable to predict the intensities of several lines. Wave nature of electrons was also not justified by this model.
Formulas used
$\dfrac{{m{v^2}}}{r} = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{{r^2}}}$ where $m$ is the mass of the electron, $v$ is its velocity, $r$ is the radius of its orbit and $e$ is its charge.
$T = \dfrac{1}{2}m{v^2}$ where $T$ is the kinetic energy.
Complete step by step solution
To calculate the K.E of electrons in an orbit of a hydrogen atom, we have to gain a knowledge of Bohr’s atomic model which put forward the following postulates:
The electrons revolve around the nucleus in a circular orbit under the influence of Coulomb force. These discrete orbits are called stationary states.
Corresponding to each of the stationary states, the orbital angular momentum of the electron $mvr$ is equal to an integral multiple of $\hbar $, i.e. $mvr = n\hbar $
Radiation of energy $h\nu $ is either emitted or absorbed when there is a transition of an electron from one energy state to another.
So, $
mvr = n\hbar \\
\Rightarrow v = \dfrac{{n\hbar }}{{mr}} \\
$
To maintain the stability of the circular orbit of the electrons, the Coulomb’s force of attraction is balanced by the centrifugal force
$\dfrac{{m{v^2}}}{r} = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{{r^2}}}$
$ \Rightarrow {v^2} = \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}mr}}$
The formula for kinetic energy is $\dfrac{1}{2}m{v^2}$
Substituting the value of ${v^2}$ in this expression we get,
$
T = \dfrac{1}{2}m \times \dfrac{{{e^2}}}{{4\pi {\varepsilon _0}mr}} \\
\Rightarrow T = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{e^2}}}{{2r}} \\
$
Since the factor $\dfrac{1}{{4\pi {\varepsilon _0}}}$ is a dimensionless quantity, so we can say that the kinetic energy is proportional to $\dfrac{{{e^2}}}{{2r}}$
Hence, the correct option is B.
Note Even though Bohr revolutionized the whole quantum theory with his atomic model, there were some drawbacks to this. The atomic model was primarily for hydrogen atoms and couldn’t elaborate the spectra of multi-electron systems and was unable to predict the intensities of several lines. Wave nature of electrons was also not justified by this model.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
