
The instantaneous value of alternating current and voltages in a circuit are given as\[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] , \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\].The average power in Watts consumed in the circuit is:
A) \[\dfrac{{\sqrt 3 }}{4}\]
B) \[\dfrac{1}{2}\]
C) \[\dfrac{1}{8}\]
D) \[\dfrac{1}{4}\]
Answer
153.6k+ views
Hint: In an alternating current circuit, values of both electromotive force and current change continuously with respect to time. So, we cannot calculate the power directly. the average power for the sinusoidal function will be obtained by averaging over one period. The average power of an alternating current circuit is also known as the true power of the electrical circuit.
First we calculate root mean square (rms) values of current and voltage. Then we find the phase difference between them. Phase difference is denoted by symbol. In question phase difference is \[\dfrac{\pi }{3}\]in radian or\[{60^0}\].
Formula used: We know that the power is equal to the product of voltage and time. We calculate average power by the formula \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Complete step by step solution:
Given: \[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] and \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\]
i.e., \[{i_0} = \dfrac{1}{{\sqrt 2 }}\] and \[{V_0} = \dfrac{1}{{\sqrt 2 }}\].
Therefore, average power consumed in the circuit is given by
\[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
\[{P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \cos {60^0}\]
We know that \[{V_{rms}} = \dfrac{1}{2}\], \[{i_{rms}} = \dfrac{1}{2}\]and \[\phi = {60^0}\]
\[ \Rightarrow {P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{8}W\]
\[\therefore {P_{av}} = \dfrac{1}{8}W\]
Hence, Average power consumed in AC circuit is \[\therefore {P_{av}} = \dfrac{1}{8}W\].
Additional information: For AC circuits, the instantaneous power is constantly changing with varying amounts of time. The curve of power vs time is sinusoidal. As we get this type of curve i.e., it makes it difficult to measure power. Calculating average or mean value of the power, It is therefore more convenient to calculate. The average value of the instantaneous power over a fixed number of cycles, the average power of sinusoidal curve is given simply as: \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Note: Students must be careful to calculate root mean square values of current and voltage. They must be careful to find phase difference between voltage and current. In question rms values are given. Don’t put \[\dfrac{1}{{\sqrt 2 }}\]as \[{V_{rms}}\] and \[{i_{rms}}\]in formula. Here \[\dfrac{1}{{\sqrt 2 }}\]is \[{i_0}\] for current and \[\dfrac{1}{{\sqrt 2 }}\]is \[{V_0}\].
First we calculate root mean square (rms) values of current and voltage. Then we find the phase difference between them. Phase difference is denoted by symbol. In question phase difference is \[\dfrac{\pi }{3}\]in radian or\[{60^0}\].
Formula used: We know that the power is equal to the product of voltage and time. We calculate average power by the formula \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Complete step by step solution:
Given: \[i = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t} \right)Ampere\] and \[e = \dfrac{1}{{\sqrt 2 }}\sin \left( {100\pi t + \dfrac{\pi }{3}} \right)Volt\]
i.e., \[{i_0} = \dfrac{1}{{\sqrt 2 }}\] and \[{V_0} = \dfrac{1}{{\sqrt 2 }}\].
Therefore, average power consumed in the circuit is given by
\[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
\[{P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \cos {60^0}\]
We know that \[{V_{rms}} = \dfrac{1}{2}\], \[{i_{rms}} = \dfrac{1}{2}\]and \[\phi = {60^0}\]
\[ \Rightarrow {P_{av}} = \dfrac{1}{2} \times \dfrac{1}{2} \times \dfrac{1}{2} = \dfrac{1}{8}W\]
\[\therefore {P_{av}} = \dfrac{1}{8}W\]
Hence, Average power consumed in AC circuit is \[\therefore {P_{av}} = \dfrac{1}{8}W\].
Additional information: For AC circuits, the instantaneous power is constantly changing with varying amounts of time. The curve of power vs time is sinusoidal. As we get this type of curve i.e., it makes it difficult to measure power. Calculating average or mean value of the power, It is therefore more convenient to calculate. The average value of the instantaneous power over a fixed number of cycles, the average power of sinusoidal curve is given simply as: \[{P_{av}} = {V_{rms}} \times {i_{rms}}\cos \phi \].
Note: Students must be careful to calculate root mean square values of current and voltage. They must be careful to find phase difference between voltage and current. In question rms values are given. Don’t put \[\dfrac{1}{{\sqrt 2 }}\]as \[{V_{rms}}\] and \[{i_{rms}}\]in formula. Here \[\dfrac{1}{{\sqrt 2 }}\]is \[{i_0}\] for current and \[\dfrac{1}{{\sqrt 2 }}\]is \[{V_0}\].
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Ideal and Non-Ideal Solutions Raoult's Law - JEE
