
The ground state energy of a hydrogen atom is \[ - 13.6eV\]. What is the kinetic energy of an electron in the ${2^{nd}}$ excited state?
Answer
146.7k+ views
Hint: In order to solve this you have to know the concept of the total energy of ${n^{th}}$ excited state of the hydrogen atom. Also, remember that the total energy of any excited state of the hydrogen atom is equal to the negative of its kinetic energy in that excited state.
Formula used:
The formula for the total energy of ${n^{th}}$ excited state of hydrogen atom is given by
${E_n} = \dfrac{{{E_0}}}{{{n^2}}}$
Where, ${E_0}$ is the energy at the ground state of hydrogen atom
$n$ is the excited state level
Complete step by step solution:
It is given in the question, the ground state energy of the hydrogen atom is
${E_0} = - 13.6eV$
And we have to find the kinetic energy of an electron in the ${2^{nd}}$ excited state
So, the ${2^{nd}}$ excited state means \[{3^{rd}}\] normal state or we can say that
$n = 3$
By using the formula for the total energy of ${n^{th}}$ excited state of hydrogen atom is given by
${E_n} = \dfrac{{{E_0}}}{{{n^2}}}$
Where, ${E_0}$ is the energy at the ground state of hydrogen atom
$n$ is the excited state level
Now, on putting the values in the above formula, we get
$ \Rightarrow {E_n} = \dfrac{{ - 13.6}}{{{{\left( 3 \right)}^2}}}$
$ \Rightarrow {E_n} = \dfrac{{ - 13.6}}{9}$
On further solving, we get
$ \Rightarrow {E_n} = - 1.51eV$
As we know that the total energy of any excited state of hydrogen atom is equal to the negative of its kinetic energy in that excited state
Total energy $ = $ $ - $ kinetic energy
So, kinetic energy $ = $ $ - $ total energy
Thus, the kinetic energy of an electron in the ${2^{nd}}$ excited state is given by,
\[K.E = -1.51eV\]
$ \therefore K.E = 1.51eV$
Therefore, the kinetic energy of an hydrogen electron in the ${2^{nd}}$ excited state is $1.51eV$.
Note: Always remember that if the electron wants to jump from $n = 1$, the first energy level to the, $n = 2$ , the second energy level then the second energy level has higher energy than the first and the electron needs to gain energy as it moves from lower energy level to the high energy level. The electron can gain the energy it needs by absorbing light. If the electron jumps from a higher energy level down to a lower energy level, it must lose some energy by emitting light.
Formula used:
The formula for the total energy of ${n^{th}}$ excited state of hydrogen atom is given by
${E_n} = \dfrac{{{E_0}}}{{{n^2}}}$
Where, ${E_0}$ is the energy at the ground state of hydrogen atom
$n$ is the excited state level
Complete step by step solution:
It is given in the question, the ground state energy of the hydrogen atom is
${E_0} = - 13.6eV$
And we have to find the kinetic energy of an electron in the ${2^{nd}}$ excited state
So, the ${2^{nd}}$ excited state means \[{3^{rd}}\] normal state or we can say that
$n = 3$
By using the formula for the total energy of ${n^{th}}$ excited state of hydrogen atom is given by
${E_n} = \dfrac{{{E_0}}}{{{n^2}}}$
Where, ${E_0}$ is the energy at the ground state of hydrogen atom
$n$ is the excited state level
Now, on putting the values in the above formula, we get
$ \Rightarrow {E_n} = \dfrac{{ - 13.6}}{{{{\left( 3 \right)}^2}}}$
$ \Rightarrow {E_n} = \dfrac{{ - 13.6}}{9}$
On further solving, we get
$ \Rightarrow {E_n} = - 1.51eV$
As we know that the total energy of any excited state of hydrogen atom is equal to the negative of its kinetic energy in that excited state
Total energy $ = $ $ - $ kinetic energy
So, kinetic energy $ = $ $ - $ total energy
Thus, the kinetic energy of an electron in the ${2^{nd}}$ excited state is given by,
\[K.E = -1.51eV\]
$ \therefore K.E = 1.51eV$
Therefore, the kinetic energy of an hydrogen electron in the ${2^{nd}}$ excited state is $1.51eV$.
Note: Always remember that if the electron wants to jump from $n = 1$, the first energy level to the, $n = 2$ , the second energy level then the second energy level has higher energy than the first and the electron needs to gain energy as it moves from lower energy level to the high energy level. The electron can gain the energy it needs by absorbing light. If the electron jumps from a higher energy level down to a lower energy level, it must lose some energy by emitting light.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
