
The general value of \[\theta \] in the equation \[2\sqrt 3 \cos \theta = \tan \theta \], is
A. \[2n\pi \pm \dfrac{\pi }{6}\]
B. \[2n\pi \pm \dfrac{\pi }{4}\]
C. \[n\pi + {( - 1)^n}\dfrac{\pi }{3}\]
D. \[n\pi + {( - 1)^n}\dfrac{\pi }{4}\]
Answer
162.3k+ views
Hint: To solve this question, we will use the trigonometric formulas of \[\cos \theta \] and \[\tan \theta \]. The angles of the triangle are \[\pi \]. When solving trigonometry problems, the values of the trigonometric functions for \[{0^ \circ }\], \[{30^ \circ }\], \[{45^ \circ }\], \[{60^ \circ }\], and \[{90^ \circ }\] are frequently applied. The sides of the right triangle, such as the neighbouring side, opposite side, and hypotenuse side, are used to determine each of these trigonometric ratios.
Formula Used: The trigonometric formulas of tangent are:
\[2\sqrt 3 \cos \theta = \tan \theta \]
\[ \Rightarrow 2\sqrt 3 \cos \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow 2\sqrt 3 {\cos ^2}\theta = \sin \theta \]
Complete step by step solution: We have, \[2\sqrt 3 \cos \theta = \tan \theta \]
\[ \Rightarrow 2\sqrt 3 \cos \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow 2\sqrt 3 {\cos ^2}\theta = \sin \theta \]
\[ \Rightarrow 2\sqrt 3 {\sin ^2}\theta + \sin \theta - 2\sqrt 3 = 0\]
\[ \Rightarrow \sin \theta = \dfrac{{ - 1 + 7}}{{4\sqrt 3 }}\]
\[ \Rightarrow \sin \dfrac{{ - 8}}{{4\sqrt 3 }}\] (Impossible)
\[ \Rightarrow \sin \theta = \dfrac{6}{{4\sqrt 3 }} = \dfrac{{\sqrt 3 }}{2}\]
Therefore, \[\theta = n\pi + {( - 1)^n}\dfrac{\pi }{3}\]
The basic trigonometry formula \[\cos \theta = \dfrac{1}{{\tan \theta }}\sin \theta = \dfrac{1}{{\cos \theta }}\cos \theta = \dfrac{1}{{\sin \theta }}\tan \theta = \dfrac{1}{{\cos \theta }}\]. The equations \[\cos \theta = \dfrac{1}{{\sqrt 2 }}\] and \[\tan \theta = 1\] gives the general value of theta. The value matching the equations \[\sin = \sin \] and \[\cos = \cos \] is most generally expressed as\[n{\rm{ }} = {\rm{ }} + \].
Periodic Identities: These are trigonometry formulas that assist in determining the values of trig functions for an angle shift of \[/2\],etc.
Formulas for trigonometry can be applied to a wide range of problems. These issues could involve Pythagorean identities, product identities, trigonometric ratios (sin, cos, tan, sec, cosec, and cot), etc.
The nature of all trigonometric identities is cyclicity. After this periodicity is constant, they repeat. Varies depending on the trigonometric identity.
Option ‘C’ is correct
Note: The reciprocals of the fundamental trigonometric ratio’s sine, cosine, and tangent are cosecant, secant, and cotangent. A right-angled triangle is used as a model to determine each reciprocal identity. Right-angle triangle lengths and angles are measured using trigonometry values of various ratios, including sine, cosine, tangent, secant, cotangent, and cosecant. When solving trigonometry problems, the values of the trigonometric functions for\[{0^ \circ }\],\[{30^ \circ }\],\[{45^ \circ }\],\[{60^ \circ }\], \[{90^ \circ }\]and are frequently employed.
Formula Used: The trigonometric formulas of tangent are:
\[2\sqrt 3 \cos \theta = \tan \theta \]
\[ \Rightarrow 2\sqrt 3 \cos \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow 2\sqrt 3 {\cos ^2}\theta = \sin \theta \]
Complete step by step solution: We have, \[2\sqrt 3 \cos \theta = \tan \theta \]
\[ \Rightarrow 2\sqrt 3 \cos \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ \Rightarrow 2\sqrt 3 {\cos ^2}\theta = \sin \theta \]
\[ \Rightarrow 2\sqrt 3 {\sin ^2}\theta + \sin \theta - 2\sqrt 3 = 0\]
\[ \Rightarrow \sin \theta = \dfrac{{ - 1 + 7}}{{4\sqrt 3 }}\]
\[ \Rightarrow \sin \dfrac{{ - 8}}{{4\sqrt 3 }}\] (Impossible)
\[ \Rightarrow \sin \theta = \dfrac{6}{{4\sqrt 3 }} = \dfrac{{\sqrt 3 }}{2}\]
Therefore, \[\theta = n\pi + {( - 1)^n}\dfrac{\pi }{3}\]
The basic trigonometry formula \[\cos \theta = \dfrac{1}{{\tan \theta }}\sin \theta = \dfrac{1}{{\cos \theta }}\cos \theta = \dfrac{1}{{\sin \theta }}\tan \theta = \dfrac{1}{{\cos \theta }}\]. The equations \[\cos \theta = \dfrac{1}{{\sqrt 2 }}\] and \[\tan \theta = 1\] gives the general value of theta. The value matching the equations \[\sin = \sin \] and \[\cos = \cos \] is most generally expressed as\[n{\rm{ }} = {\rm{ }} + \].
Periodic Identities: These are trigonometry formulas that assist in determining the values of trig functions for an angle shift of \[/2\],etc.
Formulas for trigonometry can be applied to a wide range of problems. These issues could involve Pythagorean identities, product identities, trigonometric ratios (sin, cos, tan, sec, cosec, and cot), etc.
The nature of all trigonometric identities is cyclicity. After this periodicity is constant, they repeat. Varies depending on the trigonometric identity.
Option ‘C’ is correct
Note: The reciprocals of the fundamental trigonometric ratio’s sine, cosine, and tangent are cosecant, secant, and cotangent. A right-angled triangle is used as a model to determine each reciprocal identity. Right-angle triangle lengths and angles are measured using trigonometry values of various ratios, including sine, cosine, tangent, secant, cotangent, and cosecant. When solving trigonometry problems, the values of the trigonometric functions for\[{0^ \circ }\],\[{30^ \circ }\],\[{45^ \circ }\],\[{60^ \circ }\], \[{90^ \circ }\]and are frequently employed.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
