
The focal length of the combination of two convex lenses in contact is \[f\] and if they are separated by a distance, then focal length of the combination is \[{f_1}\]. The correct statement is
(A) \[f > {f_1}\]
(B) \[f = {f_1}\]
(C) \[f < {f_1}\]
(D) \[f{f_1} = 1\]
Answer
218.4k+ views
Hint: To solve this question, we need to use the formula for the combination of lenses for the two cases. From there we will have two equations, which can be compared to get the required result.
Formula Used
1. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] where\[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] in contact with each other
2. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] where \[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] separated by distance \[d\]
Complete step-by-step solution
As we know, the equivalent focal length of the combination of two lenses in contact is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] (1)
Also, we know that the equivalent focal length of the combination of two lenses separated by a distance d is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] (2)
Let the focal lengths of the two convex lenses be \[{f_a}\] and \[{f_b}\].
According to the question, the focal length of the combination of the two convex lenses in contact is \[f\]
So, from (1) we have
\[\dfrac{1}{f} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}}\] (3)
Also, if they are separated by a distance, then the focal length of the combination is\[{f_1}\]. Let \[x\] be the distance between the two convex lenses. Then from (2) we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}} - \dfrac{d}{{{f_a}{f_b}}}\] (4)
As we know that the focal length of a convex lens is positive .Since both the lenses are convex, so both \[{f_a}\] and \[{f_b}\] are positive. This means that the product \[{f_a}{f_b}\] in the equation (4) is positive.
From (3) and (4), we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{f} - \dfrac{d}{{{f_a}{f_b}}}\]
Since \[{f_a}{f_b} > 0\]
\[\dfrac{1}{{{f_1}}} < \dfrac{1}{f}\]
Taking reciprocal, we get
\[{f_1} > f\]
which can also be written as,
\[f < {f_1}\]
Hence, the correct answer is option C, \[f < {f_1}\]
Note: Be careful to reverse the sign of the inequality while taking the reciprocal. It is a common mistake of directly taking the reciprocal without reversing the inequality sign. So, the rules of the algebra of inequalities should be kept in mind whenever dealing with inequalities.
Formula Used
1. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] where\[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] in contact with each other
2. \[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] where \[{f_e} = \] focal length of combination of two lenses of focal lengths \[{f_1}\] and \[{f_2}\] separated by distance \[d\]
Complete step-by-step solution
As we know, the equivalent focal length of the combination of two lenses in contact is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}\] (1)
Also, we know that the equivalent focal length of the combination of two lenses separated by a distance d is given by the relation
\[\dfrac{1}{{{f_e}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} - \dfrac{d}{{{f_1}{f_2}}}\] (2)
Let the focal lengths of the two convex lenses be \[{f_a}\] and \[{f_b}\].
According to the question, the focal length of the combination of the two convex lenses in contact is \[f\]
So, from (1) we have
\[\dfrac{1}{f} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}}\] (3)
Also, if they are separated by a distance, then the focal length of the combination is\[{f_1}\]. Let \[x\] be the distance between the two convex lenses. Then from (2) we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{{{f_a}}} + \dfrac{1}{{{f_b}}} - \dfrac{d}{{{f_a}{f_b}}}\] (4)
As we know that the focal length of a convex lens is positive .Since both the lenses are convex, so both \[{f_a}\] and \[{f_b}\] are positive. This means that the product \[{f_a}{f_b}\] in the equation (4) is positive.
From (3) and (4), we have
\[\dfrac{1}{{{f_1}}} = \dfrac{1}{f} - \dfrac{d}{{{f_a}{f_b}}}\]
Since \[{f_a}{f_b} > 0\]
\[\dfrac{1}{{{f_1}}} < \dfrac{1}{f}\]
Taking reciprocal, we get
\[{f_1} > f\]
which can also be written as,
\[f < {f_1}\]
Hence, the correct answer is option C, \[f < {f_1}\]
Note: Be careful to reverse the sign of the inequality while taking the reciprocal. It is a common mistake of directly taking the reciprocal without reversing the inequality sign. So, the rules of the algebra of inequalities should be kept in mind whenever dealing with inequalities.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding the Wheatstone Bridge: Principles, Formula, and Applications

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main 2025-26 Mock Test: Ultimate Practice Guide for Aspirants

Other Pages
MOSFET: Definition, Working Principle, Types & Applications

Diffraction of Light - Young’s Single Slit Experiment

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Main 2025-26 Chapter-Wise Mock Test Preparation Guide

Understanding Elastic Collisions in Two Dimensions

