
The extent of ionization of weak electrolyte increases:
A. With increase in concentration of the solute
B. On addition of excess of water
C. On decreasing the temperature
D. On stirring the solution vigorously
Answer
220.8k+ views
Hint:A weak electrolyte's degree of an ionisation that may be influenced by the variety of variables which is sometimes combined with other chemical changes. Weak electrolytes can dissolve in small amounts per liter of solution.
Complete step-by-step answer:In order to know that the weak electrolyte's dissociation constant is described by Ostwald's dilution law along with the weak electrolyte's concentration and degree of dissociation $(\alpha )$,
Only a small portion of the weak electrolytes are soluble in solution. As a result the electrolyte do not fully ionise in solution. However, even weak acids begin to ionise at high dilutions. As a result, dilution increases along with the degree of ionisation.
The binary electrolyte $AB$ separates into the ions ${A^ + }$ and ${B^ - }$.
$AB{\text{ }} \rightleftharpoons {\text{ }}{A^ + }\; + {\text{ }}{B^-}$
For very weak electrolytes, since $\alpha {\text{ }} < < < {\text{ }}1,{\text{ }}\left( {1{\text{ }}-{\text{ }}\alpha } \right){\text{ }} = {\text{ }}1$, then we have:
$\;{K_a} = C{\alpha ^2} \\$
$\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \\$
On adding an excess of water, the concentration decreases, then we have:
$\alpha \propto \dfrac{1}{{\sqrt C }}$
Here, Degree of ionization $\alpha = \dfrac{{Number\,of\,molecules\,get\,ionized\,in\,solution}}{{Total\,number\,of\,molecules\,taken}} \times 100$
$\alpha = $degree of ionization.
Therefore, as a concentration increases then the degree of ionization decreases and vice versa.
Option ‘B’ is correct
Note: Since ionization does, to a limited extent, occur in weak electrolytes. As a result, the unionised electrolyte and the ions created in the solution will be in balance. The degree of ionisation is affected by a variety of variables, such as dilution, solvent type, temperature, the presence of additional ions, etc.
Complete step-by-step answer:In order to know that the weak electrolyte's dissociation constant is described by Ostwald's dilution law along with the weak electrolyte's concentration and degree of dissociation $(\alpha )$,
Only a small portion of the weak electrolytes are soluble in solution. As a result the electrolyte do not fully ionise in solution. However, even weak acids begin to ionise at high dilutions. As a result, dilution increases along with the degree of ionisation.
The binary electrolyte $AB$ separates into the ions ${A^ + }$ and ${B^ - }$.
$AB{\text{ }} \rightleftharpoons {\text{ }}{A^ + }\; + {\text{ }}{B^-}$
For very weak electrolytes, since $\alpha {\text{ }} < < < {\text{ }}1,{\text{ }}\left( {1{\text{ }}-{\text{ }}\alpha } \right){\text{ }} = {\text{ }}1$, then we have:
$\;{K_a} = C{\alpha ^2} \\$
$\Rightarrow \alpha = \sqrt {\dfrac{{{K_a}}}{C}} \\$
On adding an excess of water, the concentration decreases, then we have:
$\alpha \propto \dfrac{1}{{\sqrt C }}$
Here, Degree of ionization $\alpha = \dfrac{{Number\,of\,molecules\,get\,ionized\,in\,solution}}{{Total\,number\,of\,molecules\,taken}} \times 100$
$\alpha = $degree of ionization.
Therefore, as a concentration increases then the degree of ionization decreases and vice versa.
Option ‘B’ is correct
Note: Since ionization does, to a limited extent, occur in weak electrolytes. As a result, the unionised electrolyte and the ions created in the solution will be in balance. The degree of ionisation is affected by a variety of variables, such as dilution, solvent type, temperature, the presence of additional ions, etc.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

