
The equations ${x^2} - 11x + a$ and ${x^2} - 14x + 2a$ will have a common factor, if $a = $
A. $24$
B. $0,24$
C. $3,24$
D. $0,3$
Answer
233.1k+ views
Hint: To find the value of an unknown in the given quadratics, we first use the cramer’s rule as it is already given in the question that the given equations have a common root or factor. After applying the method, we will get three equations (all equal to one another). One by one we have to equalize these equations i.e., two equations at a time. After that, solve the equations to get the value of the unknown.
Formula Used: Apply the following condition:
$\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - {c_1}}&{{b_1}} \\
{ - {c_2}}&{{b_2}}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{ - {c_1}} \\
{{a_2}}&{ - {c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$ , where $\alpha $ is the common root of the equations.
Complete step-by-step solution:
Given quadratic equation,
${x^2} - 11x + a = 0$
It gives the coefficient’s value on comparing with the equation ${a_1}{x^2} + {b_1}x + {c_1} = 0$ .
We have ${a_1} = 1$ , ${b_1} = - 11$ and ${c_1} = a$ .
${x^2} - 14x + 2a = 0$
In comparison with ${a_2}{x^2} + {b_2}x + {c_2} = 0$ .
We have ${a_2} = 1$ , ${b_2} = - 14$ and ${c_2} = 2a$ .
Substitute these values in the condition $\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - {c_1}}&{{b_1}} \\
{ - {c_2}}&{{b_2}}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{ - {c_1}} \\
{{a_2}}&{ - {c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
We get, $\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - a}&{ - 11} \\
{ - 2a}&{ - 14}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
1&{ - a} \\
1&{ - 2a}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&{ - 11} \\
1&{ - 14}
\end{array}} \right|}}$
Solving the determinants in the denominator, we get
$\dfrac{{{\alpha ^2}}}{{ - 22a + 14a}} = \dfrac{\alpha }{{a - 2a}} = \dfrac{1}{{ - 14 + 11}}$
Solving further,
$\dfrac{{{\alpha ^2}}}{{ - 8a}} = \dfrac{\alpha }{{ - a}} = \dfrac{1}{{ - 3}}$
Considering the first and third part, we get
${\alpha ^2} = \dfrac{{8a}}{3}$
And taking second and third part, we get
$\alpha = \dfrac{a}{3}$
Putting the value of $\alpha $
${\left( {\dfrac{a}{3}} \right)^2} = \dfrac{{8a}}{3}$
Solving this equation, we get two values of $a$ which are $0,24$ .
Hence, the correct option is B.
Note: Students should not make the mistake of canceling a from both sides then we will get only one value of a. So instead of canceling, we need to take common.
Formula Used: Apply the following condition:
$\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - {c_1}}&{{b_1}} \\
{ - {c_2}}&{{b_2}}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{ - {c_1}} \\
{{a_2}}&{ - {c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$ , where $\alpha $ is the common root of the equations.
Complete step-by-step solution:
Given quadratic equation,
${x^2} - 11x + a = 0$
It gives the coefficient’s value on comparing with the equation ${a_1}{x^2} + {b_1}x + {c_1} = 0$ .
We have ${a_1} = 1$ , ${b_1} = - 11$ and ${c_1} = a$ .
${x^2} - 14x + 2a = 0$
In comparison with ${a_2}{x^2} + {b_2}x + {c_2} = 0$ .
We have ${a_2} = 1$ , ${b_2} = - 14$ and ${c_2} = 2a$ .
Substitute these values in the condition $\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - {c_1}}&{{b_1}} \\
{ - {c_2}}&{{b_2}}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{ - {c_1}} \\
{{a_2}}&{ - {c_2}}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}} \\
{{a_2}}&{{b_2}}
\end{array}} \right|}}$
We get, $\dfrac{{{\alpha ^2}}}{{\left| {\begin{array}{*{20}{c}}
{ - a}&{ - 11} \\
{ - 2a}&{ - 14}
\end{array}} \right|}} = \dfrac{\alpha }{{\left| {\begin{array}{*{20}{c}}
1&{ - a} \\
1&{ - 2a}
\end{array}} \right|}} = \dfrac{1}{{\left| {\begin{array}{*{20}{c}}
1&{ - 11} \\
1&{ - 14}
\end{array}} \right|}}$
Solving the determinants in the denominator, we get
$\dfrac{{{\alpha ^2}}}{{ - 22a + 14a}} = \dfrac{\alpha }{{a - 2a}} = \dfrac{1}{{ - 14 + 11}}$
Solving further,
$\dfrac{{{\alpha ^2}}}{{ - 8a}} = \dfrac{\alpha }{{ - a}} = \dfrac{1}{{ - 3}}$
Considering the first and third part, we get
${\alpha ^2} = \dfrac{{8a}}{3}$
And taking second and third part, we get
$\alpha = \dfrac{a}{3}$
Putting the value of $\alpha $
${\left( {\dfrac{a}{3}} \right)^2} = \dfrac{{8a}}{3}$
Solving this equation, we get two values of $a$ which are $0,24$ .
Hence, the correct option is B.
Note: Students should not make the mistake of canceling a from both sides then we will get only one value of a. So instead of canceling, we need to take common.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

