
The equation to the circle with center $\left( {2,1} \right)$ and touching the line $3x + 4y = 5$ is
A. ${x^2} + {y^2} - 4x - 2y + 5 = 0$
B. ${x^2} + {y^2} - 4x - 2y - 5 = 0$
C. ${x^2} + {y^2} - 4x - 2y + 4 = 0$
D. ${x^2} + {y^2} - 4x - 2y - 4 = 0$
Answer
162k+ views
Hint: In this question, we are given the centre of the circle and also the line $3x + 4y = 5$ which is touching the circle. We have to find the equation of the circle. First step is to find the radius of the circle as we have to find the equation ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$ where $\left( {h,k} \right)$is the centre and $r$ is radius. To calculate the radius, use the distance formula $D = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$, here it is the distance between the point $\left( {{x_0},{y_0}} \right)$ and the line $ax + by + c = 0$.
Formula Used:
Equation of Circle (Standard form) –
${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$, here $\left( {h,k} \right)$ is the center and $r$ is the radius of the circle
The distance of the line from the point $\left( {{x_0},{y_0}} \right)$ to the line $ax + by + c = 0$ –
$D = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$
Complete step by step solution:
Given that,
Coordinate of the center of circle are $\left( {2,1} \right)$and the circle is touching the line $3x + 4y = 5$
As we know that,

The distance from the line $ax + by + c = 0$ to the point $\left( {{x_0},{y_0}} \right)$ is $D = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$
Here, the distance between the line and the center is the radius of the circle.
Therefore, $r = \dfrac{{\left| {3\left( 2 \right) + 4\left( 1 \right) + \left( { - 5} \right)} \right|}}{{\sqrt {{3^2} + {4^2}} }}$
$r = \dfrac{{\left| {6 + 4 - 5} \right|}}{{\sqrt {9 + 16} }}$
$r = \dfrac{{\left| 5 \right|}}{{\sqrt {25} }}$
$r = 1$
Now, using the standard form of the equation of circle is
${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$
${\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = {\left( 1 \right)^2}$
${x^2} + {2^2} - 2\left( 2 \right)\left( x \right) + {y^2} + {1^2} - 2\left( 1 \right)\left( y \right) = 1$
${x^2} + {y^2} - 4x - 2y + 4 = 0$
Option ‘C’ is correct
Note: To solve such a question, first try to make the figure and understand the question properly. One should always remember each and every equation of the circle (General and standard both). Also, the formulas to find the radius and the distance between any point and line. Don’t get confused by the distance formula. There are two distance formulas one which we used in this question, and another is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $which we use to find the distance of line from one point to the other.
Formula Used:
Equation of Circle (Standard form) –
${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$, here $\left( {h,k} \right)$ is the center and $r$ is the radius of the circle
The distance of the line from the point $\left( {{x_0},{y_0}} \right)$ to the line $ax + by + c = 0$ –
$D = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$
Complete step by step solution:
Given that,
Coordinate of the center of circle are $\left( {2,1} \right)$and the circle is touching the line $3x + 4y = 5$
As we know that,

The distance from the line $ax + by + c = 0$ to the point $\left( {{x_0},{y_0}} \right)$ is $D = \dfrac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$
Here, the distance between the line and the center is the radius of the circle.
Therefore, $r = \dfrac{{\left| {3\left( 2 \right) + 4\left( 1 \right) + \left( { - 5} \right)} \right|}}{{\sqrt {{3^2} + {4^2}} }}$
$r = \dfrac{{\left| {6 + 4 - 5} \right|}}{{\sqrt {9 + 16} }}$
$r = \dfrac{{\left| 5 \right|}}{{\sqrt {25} }}$
$r = 1$
Now, using the standard form of the equation of circle is
${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}$
${\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = {\left( 1 \right)^2}$
${x^2} + {2^2} - 2\left( 2 \right)\left( x \right) + {y^2} + {1^2} - 2\left( 1 \right)\left( y \right) = 1$
${x^2} + {y^2} - 4x - 2y + 4 = 0$
Option ‘C’ is correct
Note: To solve such a question, first try to make the figure and understand the question properly. One should always remember each and every equation of the circle (General and standard both). Also, the formulas to find the radius and the distance between any point and line. Don’t get confused by the distance formula. There are two distance formulas one which we used in this question, and another is $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $which we use to find the distance of line from one point to the other.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
