
The dimensional formula for the constant ${\varepsilon _0}$ is:
A) ${M^{ - 1}}{L^{ - 3}}{T^4}{A^2}$
B) $M{L^{ - 3}}{T^3}{A^2}$
C) $M{L^{ - 3}}{T^1}{A^2}$
D) ${M^2}{L^{ - 2}}{T^3}{A^{ - 2}}$
Answer
217.5k+ views
Hint: The electrostatic force between two charges separated by a distance is known to be proportional to the product of the two charges and inversely proportional to the square of the distance between the two charges. The corresponding constant of proportionality is termed as the permittivity of free space. The given constant ${\varepsilon _0}$ represents the permittivity of free space.
Formula used:
The electrostatic force between two charges is given by, $F = \dfrac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}$ where ${q_1}$ and ${q_2}$ are the two charges, $r$ is the distance between these charges and ${\varepsilon _0}$ is the permittivity of free space.
Complete step by step answer:
Step 1: Express the relation for the electrostatic force between two charges to obtain a corresponding relation for the permittivity of free space.
The electrostatic force between two charges is expressed as $F = \dfrac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}$ --------- (1)
where ${q_1}$ and ${q_2}$ are the two charges, $r$ is the distance between these charges and ${\varepsilon _0}$ is the permittivity of free space.
Expressing equation (1) in terms of the permittivity of free space we have
${\varepsilon _0} = \dfrac{{{q_1}{q_2}}}{{4\pi F{r^2}}}$ -------- (2)
Step 2: Express the dimensional formula for each quantity involved in equation (2).
The dimensional formula for force is expressed as $F \to \left[ {ML{T^{ - 2}}} \right]$ .
The dimensional formula for the two charges ${q_1}$ or ${q_2}$ can be expressed as $q \to \left[ {AT} \right]$ , ( $A$ is the dimension for current).
The dimensional formula for distance is expressed as $r \to \left[ L \right]$ .
Expressing equation (2) in terms of dimensions we get, ${\varepsilon _0} \to \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}} = \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}}$
On further simplifying, we obtain the dimensional formula for the permittivity of free space to be${\varepsilon _0} \to \left[ {{M^{ - 1}}{L^{ - 3}}{A^2}{T^4}} \right]$.
So the correct option is A.
Note: The dimensional formula for distance is length $\left[ L \right]$ , but for the square of the distance between the two charges, we substitute $\left[ {{L^2}} \right]$ when expressing equation (2) in terms of the dimensions of the quantities involved in it. The constant $4\pi $ in equation (2) does not have a dimensional formula. The charge can be taken as the product of current and time, so we have its dimensional formula as $q \to \left[ {AT} \right]$ .
Formula used:
The electrostatic force between two charges is given by, $F = \dfrac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}$ where ${q_1}$ and ${q_2}$ are the two charges, $r$ is the distance between these charges and ${\varepsilon _0}$ is the permittivity of free space.
Complete step by step answer:
Step 1: Express the relation for the electrostatic force between two charges to obtain a corresponding relation for the permittivity of free space.
The electrostatic force between two charges is expressed as $F = \dfrac{{{q_1}{q_2}}}{{4\pi {\varepsilon _0}{r^2}}}$ --------- (1)
where ${q_1}$ and ${q_2}$ are the two charges, $r$ is the distance between these charges and ${\varepsilon _0}$ is the permittivity of free space.
Expressing equation (1) in terms of the permittivity of free space we have
${\varepsilon _0} = \dfrac{{{q_1}{q_2}}}{{4\pi F{r^2}}}$ -------- (2)
Step 2: Express the dimensional formula for each quantity involved in equation (2).
The dimensional formula for force is expressed as $F \to \left[ {ML{T^{ - 2}}} \right]$ .
The dimensional formula for the two charges ${q_1}$ or ${q_2}$ can be expressed as $q \to \left[ {AT} \right]$ , ( $A$ is the dimension for current).
The dimensional formula for distance is expressed as $r \to \left[ L \right]$ .
Expressing equation (2) in terms of dimensions we get, ${\varepsilon _0} \to \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}} = \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}}$
On further simplifying, we obtain the dimensional formula for the permittivity of free space to be${\varepsilon _0} \to \left[ {{M^{ - 1}}{L^{ - 3}}{A^2}{T^4}} \right]$.
So the correct option is A.
Note: The dimensional formula for distance is length $\left[ L \right]$ , but for the square of the distance between the two charges, we substitute $\left[ {{L^2}} \right]$ when expressing equation (2) in terms of the dimensions of the quantities involved in it. The constant $4\pi $ in equation (2) does not have a dimensional formula. The charge can be taken as the product of current and time, so we have its dimensional formula as $q \to \left[ {AT} \right]$ .
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

