
The deceleration experienced by a moving motor boat, after its engine is cut off is given by $\dfrac{{dv}}{{dt}} = - k{v^3}$ where $k$ is a constant. If ${v_0}$ is the magnitude of the velocity at the cut off, the magnitude of the velocity at a time $t$ after the cut-off is:
A) $\dfrac{{{v_0}}}{2}$
B) ${v_0}$
C) ${v_0}{e^{ - \dfrac{k}{2}}}$
D) $\dfrac{{{v_0}}}{{\sqrt {(2{v_0}^2kt + 1)} }}$
Answer
218.4k+ views
Hint: Recall what is meant by deceleration. To calculate the magnitude of velocity $v$ at time $t$ after the cut-off we need to integrate the given equation of deceleration and find the equation of $v$ and verify that equation with the given options.
Complete step by step solution:
Deceleration is nothing but negative acceleration or decrease in speed, which in simple words means slowing down.
In this question, the deceleration experienced by the moving motor boat is given by $\dfrac{{dv}}{{dt}} = - k{v^3}$
In this equation, this negative sign indicates deceleration or negative acceleration.
Now, to calculate the equation of velocity at time $t$ after cut-off, we integrate the deceleration equation.
$\dfrac{{dv}}{{dt}} = - k{v^3}$ (here $k$ is a constant)
Rearranging the terms to integrate the equation,
$ \Rightarrow \dfrac{{dv}}{{{v^3}}} = - kdt$
$ \Rightarrow \int {\dfrac{{dv}}{{{v^3}}} = \int { - kdt} } $
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt + c$ ---( $1$ )
To find the value of $c$ in this equation, we find the value of the equation at $t = 0$ and $v = {v_0}$
Therefore, substituting these values we get,
$ \Rightarrow \dfrac{{ - 1}}{{2{v_0}^2}} = c$
Substituting this value of $c$ in the equation ( $1$ ) , we get
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt + \dfrac{{ - 1}}{{2{v_0}^2}}$
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt - \dfrac{1}{{2{v_0}^2}}$
Cancelling out the negative sign from both the sides of the equation, we get
$ \Rightarrow \dfrac{1}{{2{v^2}}} = kt + \dfrac{1}{{2{v_0}^2}}$
$ \Rightarrow \dfrac{1}{{2{v^2}}} = \dfrac{{2{v_0}^2kt + 1}}{{2{v_0}^2}}$
Simplifying the equation and putting all terms other than $v$ on one side, we get
$ \Rightarrow \dfrac{{2{v_0}^2}}{{2{v^2}}} = 2{v_0}^2kt + 1$
$ \Rightarrow \dfrac{{{v_0}^2}}{{{v^2}}} = 2{v_0}^2kt + 1$
$ \Rightarrow \dfrac{{{v_0}^2}}{{2{v_0}^2kt + 1}} = {v^2}$
$ \Rightarrow {v^2} = \dfrac{{{v_0}^2}}{{2{v_0}^2kt + 1}}$
$ \Rightarrow v = \dfrac{{{v_0}}}{{\sqrt {2{v_0}^2kt + 1} }}$
Therefore, option (D), $v = \dfrac{{{v_0}}}{{\sqrt {2{v_0}^2kt + 1} }}$ is the correct option.
Note: Integrating the acceleration gives us velocity and integrating the velocity gives us the distance. On the contrary differentiating the distance with respect to time gives us velocity and differentiating the velocity with respect to time gives us acceleration.
Complete step by step solution:
Deceleration is nothing but negative acceleration or decrease in speed, which in simple words means slowing down.
In this question, the deceleration experienced by the moving motor boat is given by $\dfrac{{dv}}{{dt}} = - k{v^3}$
In this equation, this negative sign indicates deceleration or negative acceleration.
Now, to calculate the equation of velocity at time $t$ after cut-off, we integrate the deceleration equation.
$\dfrac{{dv}}{{dt}} = - k{v^3}$ (here $k$ is a constant)
Rearranging the terms to integrate the equation,
$ \Rightarrow \dfrac{{dv}}{{{v^3}}} = - kdt$
$ \Rightarrow \int {\dfrac{{dv}}{{{v^3}}} = \int { - kdt} } $
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt + c$ ---( $1$ )
To find the value of $c$ in this equation, we find the value of the equation at $t = 0$ and $v = {v_0}$
Therefore, substituting these values we get,
$ \Rightarrow \dfrac{{ - 1}}{{2{v_0}^2}} = c$
Substituting this value of $c$ in the equation ( $1$ ) , we get
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt + \dfrac{{ - 1}}{{2{v_0}^2}}$
$ \Rightarrow \dfrac{{ - 1}}{{2{v^2}}} = - kt - \dfrac{1}{{2{v_0}^2}}$
Cancelling out the negative sign from both the sides of the equation, we get
$ \Rightarrow \dfrac{1}{{2{v^2}}} = kt + \dfrac{1}{{2{v_0}^2}}$
$ \Rightarrow \dfrac{1}{{2{v^2}}} = \dfrac{{2{v_0}^2kt + 1}}{{2{v_0}^2}}$
Simplifying the equation and putting all terms other than $v$ on one side, we get
$ \Rightarrow \dfrac{{2{v_0}^2}}{{2{v^2}}} = 2{v_0}^2kt + 1$
$ \Rightarrow \dfrac{{{v_0}^2}}{{{v^2}}} = 2{v_0}^2kt + 1$
$ \Rightarrow \dfrac{{{v_0}^2}}{{2{v_0}^2kt + 1}} = {v^2}$
$ \Rightarrow {v^2} = \dfrac{{{v_0}^2}}{{2{v_0}^2kt + 1}}$
$ \Rightarrow v = \dfrac{{{v_0}}}{{\sqrt {2{v_0}^2kt + 1} }}$
Therefore, option (D), $v = \dfrac{{{v_0}}}{{\sqrt {2{v_0}^2kt + 1} }}$ is the correct option.
Note: Integrating the acceleration gives us velocity and integrating the velocity gives us the distance. On the contrary differentiating the distance with respect to time gives us velocity and differentiating the velocity with respect to time gives us acceleration.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

Understanding Electromagnetic Waves and Their Importance

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

Other Pages
NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Understanding Elastic Collisions in Two Dimensions

