
The coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is
\[\begin{align}
& A.-144 \\
& B.144 \\
& C.-128 \\
& D.-142 \\
\end{align}\]
Answer
232.8k+ views
Hint: In this question, we are given a polynomial and we need to find a coefficient of ${{x}^{7}}$. For this, we first need to simplify the polynomial. We will factorise the polynomial. Then, we will find all the possible combinations of powers of x from the factor which when multiplied will give us the power of x as 7. Then, we will find the coefficients of all these combinations and add. For finding the coefficient of any ${{x}^{n}}$ in ${{\left( 1+x \right)}^{p}}$ we use formula: ${}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$ and for coefficient of any ${{x}^{n}}{{\left( 1-x \right)}^{p}}$ we use formula ${{\left( -1 \right)}^{n}}{}^{p}{{C}_{n}}={{\left( -1 \right)}^{n}}\dfrac{p!}{n!\left( p-n \right)!}$.
Complete step-by-step solution
Here, we are given the polynomial as ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$.
Let us factorise it $\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)$. Taking $-{{x}^{2}}$ common from third and fourth term we get: $\left( \left( 1-x \right)-{{x}^{2}}\left( 1-x \right) \right)$. Now take the common (1-x) common we get: $\left( 1-x \right)\left( 1-{{x}^{2}} \right)$. As we know that, ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ so we get: $\left( 1-x \right)\left( 1-x \right)\left( 1+x \right)\Rightarrow {{\left( 1-x \right)}^{2}}\left( 1+x \right)$.
Now, ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ becomes ${{\left( {{\left( 1-x \right)}^{2}}\left( 1+x \right) \right)}^{6}}\Rightarrow {{\left( 1-x \right)}^{12}}{{\left( 1+x \right)}^{6}}$.
Now, let us find combination of ${{x}^{m}}$ from ${{\left( 1-x \right)}^{12}}$ and ${{x}^{n}}$ from ${{\left( 1+x \right)}^{6}}$ such that ${{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}}={{x}^{7}}$ and then apply following formula to find coefficient.
Coefficient of ${{x}^{m}}$ in ${{\left( 1+x \right)}^{p}}={}^{p}{{C}_{m}}=\dfrac{p!}{m!\left( p-m \right)!}$.
Coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}={}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$.
Combination and their coefficient are:
1. Coefficient of x in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{6}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow \left( -1 \right){}^{12}{{C}_{1}}\times {}^{6}{{C}_{6}} \\
& \Rightarrow \dfrac{-12!}{1!\left( 12-1 \right)!}\times \dfrac{6!}{6!\left( 6-6 \right)!} \\
& \Rightarrow \dfrac{-12\times 11!}{11!}\times \dfrac{1}{0!} \\
& \Rightarrow -12\times 1=-12 \\
\end{align}\]
2. Coefficient of ${{x}^{2}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{5}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{2}}{}^{12}{{C}_{2}}\times {}^{6}{{C}_{5}} \\
& \Rightarrow \dfrac{12!}{2!10!}\times \dfrac{6!}{5!} \\
& \Rightarrow \dfrac{12\times 11\times 10!}{2\times 10!}\times \dfrac{6\times 5!}{5!} \\
& \Rightarrow 66\times 6 \\
& \Rightarrow 396 \\
\end{align}\]
3. Coefficient of ${{x}^{3}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{4}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{3}}{}^{12}{{C}_{3}}\times {}^{6}{{C}_{4}} \\
& \Rightarrow \dfrac{-12!}{3!9!}\times \dfrac{6!}{4\times 2!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9!}{6\times 9!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -220\times 15 \\
& \Rightarrow -3300 \\
\end{align}\]
4. Coefficient of ${{x}^{4}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{3}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{4}}{}^{12}{{C}_{4}}\times {}^{6}{{C}_{3}} \\
& \Rightarrow \dfrac{12!}{4!8!}\times \dfrac{6!}{3!3!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8!}{24\times 8!}\times \dfrac{6\times 5\times 4\times 3!}{6\times 3!} \\
& \Rightarrow 495\times 20 \\
& \Rightarrow 9900 \\
\end{align}\]
5. Coefficient of ${{x}^{5}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{2}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{5}}{}^{12}{{C}_{5}}\times {}^{6}{{C}_{2}} \\
& \Rightarrow \dfrac{-12!}{5!7!}\times \dfrac{6!}{2!4!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9\times 8\times 7!}{5\times 4\times 3\times 2\times 7!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -792\times 15 \\
& \Rightarrow -11880 \\
\end{align}\]
6. Coefficient of ${{x}^{6}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of x in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{6}}{}^{12}{{C}_{6}}\times {}^{6}{{C}_{1}} \\
& \Rightarrow \dfrac{12!}{6!6!}\times \dfrac{6!}{1!5!} \\
& \Rightarrow 924\times 6 \\
& \Rightarrow 5544 \\
\end{align}\]
7. Coefficient of ${{x}^{7}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{0}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{7}}{}^{12}{{C}_{7}}\times {}^{6}{{C}_{0}} \\
& \Rightarrow \dfrac{-12!}{7!6!}\times \dfrac{6!}{0!6!} \\
& \Rightarrow -792\times 1 \\
& \Rightarrow -792 \\
\end{align}\]
Now, adding all these combinations will give us a coefficient of ${{x}^{7}}$. Hence, the coefficient of ${{x}^{7}}$ is \[\Rightarrow -12+396-3300+9900-11880+5544-792=-144\].
Therefore, coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is -144.
Therefore, option A is the correct answer.
Note: Students should take care while evaluating ${}^{n}{{C}_{r}}$. We are dealing with huge numbers here so take care of positive and negative signs. Students should not miss any combination and don't forget to take ${{\left( -1 \right)}^{n}}$ for coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}$. To ease calculation students should know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Complete step-by-step solution
Here, we are given the polynomial as ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$.
Let us factorise it $\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)$. Taking $-{{x}^{2}}$ common from third and fourth term we get: $\left( \left( 1-x \right)-{{x}^{2}}\left( 1-x \right) \right)$. Now take the common (1-x) common we get: $\left( 1-x \right)\left( 1-{{x}^{2}} \right)$. As we know that, ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ so we get: $\left( 1-x \right)\left( 1-x \right)\left( 1+x \right)\Rightarrow {{\left( 1-x \right)}^{2}}\left( 1+x \right)$.
Now, ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ becomes ${{\left( {{\left( 1-x \right)}^{2}}\left( 1+x \right) \right)}^{6}}\Rightarrow {{\left( 1-x \right)}^{12}}{{\left( 1+x \right)}^{6}}$.
Now, let us find combination of ${{x}^{m}}$ from ${{\left( 1-x \right)}^{12}}$ and ${{x}^{n}}$ from ${{\left( 1+x \right)}^{6}}$ such that ${{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}}={{x}^{7}}$ and then apply following formula to find coefficient.
Coefficient of ${{x}^{m}}$ in ${{\left( 1+x \right)}^{p}}={}^{p}{{C}_{m}}=\dfrac{p!}{m!\left( p-m \right)!}$.
Coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}={}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$.
Combination and their coefficient are:
1. Coefficient of x in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{6}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow \left( -1 \right){}^{12}{{C}_{1}}\times {}^{6}{{C}_{6}} \\
& \Rightarrow \dfrac{-12!}{1!\left( 12-1 \right)!}\times \dfrac{6!}{6!\left( 6-6 \right)!} \\
& \Rightarrow \dfrac{-12\times 11!}{11!}\times \dfrac{1}{0!} \\
& \Rightarrow -12\times 1=-12 \\
\end{align}\]
2. Coefficient of ${{x}^{2}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{5}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{2}}{}^{12}{{C}_{2}}\times {}^{6}{{C}_{5}} \\
& \Rightarrow \dfrac{12!}{2!10!}\times \dfrac{6!}{5!} \\
& \Rightarrow \dfrac{12\times 11\times 10!}{2\times 10!}\times \dfrac{6\times 5!}{5!} \\
& \Rightarrow 66\times 6 \\
& \Rightarrow 396 \\
\end{align}\]
3. Coefficient of ${{x}^{3}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{4}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{3}}{}^{12}{{C}_{3}}\times {}^{6}{{C}_{4}} \\
& \Rightarrow \dfrac{-12!}{3!9!}\times \dfrac{6!}{4\times 2!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9!}{6\times 9!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -220\times 15 \\
& \Rightarrow -3300 \\
\end{align}\]
4. Coefficient of ${{x}^{4}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{3}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{4}}{}^{12}{{C}_{4}}\times {}^{6}{{C}_{3}} \\
& \Rightarrow \dfrac{12!}{4!8!}\times \dfrac{6!}{3!3!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8!}{24\times 8!}\times \dfrac{6\times 5\times 4\times 3!}{6\times 3!} \\
& \Rightarrow 495\times 20 \\
& \Rightarrow 9900 \\
\end{align}\]
5. Coefficient of ${{x}^{5}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{2}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{5}}{}^{12}{{C}_{5}}\times {}^{6}{{C}_{2}} \\
& \Rightarrow \dfrac{-12!}{5!7!}\times \dfrac{6!}{2!4!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9\times 8\times 7!}{5\times 4\times 3\times 2\times 7!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -792\times 15 \\
& \Rightarrow -11880 \\
\end{align}\]
6. Coefficient of ${{x}^{6}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of x in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{6}}{}^{12}{{C}_{6}}\times {}^{6}{{C}_{1}} \\
& \Rightarrow \dfrac{12!}{6!6!}\times \dfrac{6!}{1!5!} \\
& \Rightarrow 924\times 6 \\
& \Rightarrow 5544 \\
\end{align}\]
7. Coefficient of ${{x}^{7}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{0}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{7}}{}^{12}{{C}_{7}}\times {}^{6}{{C}_{0}} \\
& \Rightarrow \dfrac{-12!}{7!6!}\times \dfrac{6!}{0!6!} \\
& \Rightarrow -792\times 1 \\
& \Rightarrow -792 \\
\end{align}\]
Now, adding all these combinations will give us a coefficient of ${{x}^{7}}$. Hence, the coefficient of ${{x}^{7}}$ is \[\Rightarrow -12+396-3300+9900-11880+5544-792=-144\].
Therefore, coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is -144.
Therefore, option A is the correct answer.
Note: Students should take care while evaluating ${}^{n}{{C}_{r}}$. We are dealing with huge numbers here so take care of positive and negative signs. Students should not miss any combination and don't forget to take ${{\left( -1 \right)}^{n}}$ for coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}$. To ease calculation students should know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

