
The coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is
\[\begin{align}
& A.-144 \\
& B.144 \\
& C.-128 \\
& D.-142 \\
\end{align}\]
Answer
218.4k+ views
Hint: In this question, we are given a polynomial and we need to find a coefficient of ${{x}^{7}}$. For this, we first need to simplify the polynomial. We will factorise the polynomial. Then, we will find all the possible combinations of powers of x from the factor which when multiplied will give us the power of x as 7. Then, we will find the coefficients of all these combinations and add. For finding the coefficient of any ${{x}^{n}}$ in ${{\left( 1+x \right)}^{p}}$ we use formula: ${}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$ and for coefficient of any ${{x}^{n}}{{\left( 1-x \right)}^{p}}$ we use formula ${{\left( -1 \right)}^{n}}{}^{p}{{C}_{n}}={{\left( -1 \right)}^{n}}\dfrac{p!}{n!\left( p-n \right)!}$.
Complete step-by-step solution
Here, we are given the polynomial as ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$.
Let us factorise it $\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)$. Taking $-{{x}^{2}}$ common from third and fourth term we get: $\left( \left( 1-x \right)-{{x}^{2}}\left( 1-x \right) \right)$. Now take the common (1-x) common we get: $\left( 1-x \right)\left( 1-{{x}^{2}} \right)$. As we know that, ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ so we get: $\left( 1-x \right)\left( 1-x \right)\left( 1+x \right)\Rightarrow {{\left( 1-x \right)}^{2}}\left( 1+x \right)$.
Now, ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ becomes ${{\left( {{\left( 1-x \right)}^{2}}\left( 1+x \right) \right)}^{6}}\Rightarrow {{\left( 1-x \right)}^{12}}{{\left( 1+x \right)}^{6}}$.
Now, let us find combination of ${{x}^{m}}$ from ${{\left( 1-x \right)}^{12}}$ and ${{x}^{n}}$ from ${{\left( 1+x \right)}^{6}}$ such that ${{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}}={{x}^{7}}$ and then apply following formula to find coefficient.
Coefficient of ${{x}^{m}}$ in ${{\left( 1+x \right)}^{p}}={}^{p}{{C}_{m}}=\dfrac{p!}{m!\left( p-m \right)!}$.
Coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}={}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$.
Combination and their coefficient are:
1. Coefficient of x in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{6}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow \left( -1 \right){}^{12}{{C}_{1}}\times {}^{6}{{C}_{6}} \\
& \Rightarrow \dfrac{-12!}{1!\left( 12-1 \right)!}\times \dfrac{6!}{6!\left( 6-6 \right)!} \\
& \Rightarrow \dfrac{-12\times 11!}{11!}\times \dfrac{1}{0!} \\
& \Rightarrow -12\times 1=-12 \\
\end{align}\]
2. Coefficient of ${{x}^{2}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{5}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{2}}{}^{12}{{C}_{2}}\times {}^{6}{{C}_{5}} \\
& \Rightarrow \dfrac{12!}{2!10!}\times \dfrac{6!}{5!} \\
& \Rightarrow \dfrac{12\times 11\times 10!}{2\times 10!}\times \dfrac{6\times 5!}{5!} \\
& \Rightarrow 66\times 6 \\
& \Rightarrow 396 \\
\end{align}\]
3. Coefficient of ${{x}^{3}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{4}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{3}}{}^{12}{{C}_{3}}\times {}^{6}{{C}_{4}} \\
& \Rightarrow \dfrac{-12!}{3!9!}\times \dfrac{6!}{4\times 2!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9!}{6\times 9!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -220\times 15 \\
& \Rightarrow -3300 \\
\end{align}\]
4. Coefficient of ${{x}^{4}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{3}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{4}}{}^{12}{{C}_{4}}\times {}^{6}{{C}_{3}} \\
& \Rightarrow \dfrac{12!}{4!8!}\times \dfrac{6!}{3!3!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8!}{24\times 8!}\times \dfrac{6\times 5\times 4\times 3!}{6\times 3!} \\
& \Rightarrow 495\times 20 \\
& \Rightarrow 9900 \\
\end{align}\]
5. Coefficient of ${{x}^{5}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{2}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{5}}{}^{12}{{C}_{5}}\times {}^{6}{{C}_{2}} \\
& \Rightarrow \dfrac{-12!}{5!7!}\times \dfrac{6!}{2!4!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9\times 8\times 7!}{5\times 4\times 3\times 2\times 7!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -792\times 15 \\
& \Rightarrow -11880 \\
\end{align}\]
6. Coefficient of ${{x}^{6}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of x in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{6}}{}^{12}{{C}_{6}}\times {}^{6}{{C}_{1}} \\
& \Rightarrow \dfrac{12!}{6!6!}\times \dfrac{6!}{1!5!} \\
& \Rightarrow 924\times 6 \\
& \Rightarrow 5544 \\
\end{align}\]
7. Coefficient of ${{x}^{7}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{0}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{7}}{}^{12}{{C}_{7}}\times {}^{6}{{C}_{0}} \\
& \Rightarrow \dfrac{-12!}{7!6!}\times \dfrac{6!}{0!6!} \\
& \Rightarrow -792\times 1 \\
& \Rightarrow -792 \\
\end{align}\]
Now, adding all these combinations will give us a coefficient of ${{x}^{7}}$. Hence, the coefficient of ${{x}^{7}}$ is \[\Rightarrow -12+396-3300+9900-11880+5544-792=-144\].
Therefore, coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is -144.
Therefore, option A is the correct answer.
Note: Students should take care while evaluating ${}^{n}{{C}_{r}}$. We are dealing with huge numbers here so take care of positive and negative signs. Students should not miss any combination and don't forget to take ${{\left( -1 \right)}^{n}}$ for coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}$. To ease calculation students should know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Complete step-by-step solution
Here, we are given the polynomial as ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$.
Let us factorise it $\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)$. Taking $-{{x}^{2}}$ common from third and fourth term we get: $\left( \left( 1-x \right)-{{x}^{2}}\left( 1-x \right) \right)$. Now take the common (1-x) common we get: $\left( 1-x \right)\left( 1-{{x}^{2}} \right)$. As we know that, ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ so we get: $\left( 1-x \right)\left( 1-x \right)\left( 1+x \right)\Rightarrow {{\left( 1-x \right)}^{2}}\left( 1+x \right)$.
Now, ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ becomes ${{\left( {{\left( 1-x \right)}^{2}}\left( 1+x \right) \right)}^{6}}\Rightarrow {{\left( 1-x \right)}^{12}}{{\left( 1+x \right)}^{6}}$.
Now, let us find combination of ${{x}^{m}}$ from ${{\left( 1-x \right)}^{12}}$ and ${{x}^{n}}$ from ${{\left( 1+x \right)}^{6}}$ such that ${{x}^{m}}\cdot {{x}^{n}}={{x}^{m+n}}={{x}^{7}}$ and then apply following formula to find coefficient.
Coefficient of ${{x}^{m}}$ in ${{\left( 1+x \right)}^{p}}={}^{p}{{C}_{m}}=\dfrac{p!}{m!\left( p-m \right)!}$.
Coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}={}^{p}{{C}_{n}}=\dfrac{p!}{n!\left( p-n \right)!}$.
Combination and their coefficient are:
1. Coefficient of x in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{6}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow \left( -1 \right){}^{12}{{C}_{1}}\times {}^{6}{{C}_{6}} \\
& \Rightarrow \dfrac{-12!}{1!\left( 12-1 \right)!}\times \dfrac{6!}{6!\left( 6-6 \right)!} \\
& \Rightarrow \dfrac{-12\times 11!}{11!}\times \dfrac{1}{0!} \\
& \Rightarrow -12\times 1=-12 \\
\end{align}\]
2. Coefficient of ${{x}^{2}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{5}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{2}}{}^{12}{{C}_{2}}\times {}^{6}{{C}_{5}} \\
& \Rightarrow \dfrac{12!}{2!10!}\times \dfrac{6!}{5!} \\
& \Rightarrow \dfrac{12\times 11\times 10!}{2\times 10!}\times \dfrac{6\times 5!}{5!} \\
& \Rightarrow 66\times 6 \\
& \Rightarrow 396 \\
\end{align}\]
3. Coefficient of ${{x}^{3}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{4}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{3}}{}^{12}{{C}_{3}}\times {}^{6}{{C}_{4}} \\
& \Rightarrow \dfrac{-12!}{3!9!}\times \dfrac{6!}{4\times 2!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9!}{6\times 9!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -220\times 15 \\
& \Rightarrow -3300 \\
\end{align}\]
4. Coefficient of ${{x}^{4}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{3}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{4}}{}^{12}{{C}_{4}}\times {}^{6}{{C}_{3}} \\
& \Rightarrow \dfrac{12!}{4!8!}\times \dfrac{6!}{3!3!} \\
& \Rightarrow \dfrac{12\times 11\times 10\times 9\times 8!}{24\times 8!}\times \dfrac{6\times 5\times 4\times 3!}{6\times 3!} \\
& \Rightarrow 495\times 20 \\
& \Rightarrow 9900 \\
\end{align}\]
5. Coefficient of ${{x}^{5}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{2}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{5}}{}^{12}{{C}_{5}}\times {}^{6}{{C}_{2}} \\
& \Rightarrow \dfrac{-12!}{5!7!}\times \dfrac{6!}{2!4!} \\
& \Rightarrow \dfrac{-12\times 11\times 10\times 9\times 8\times 7!}{5\times 4\times 3\times 2\times 7!}\times \dfrac{6\times 5\times 4!}{4!\times 2} \\
& \Rightarrow -792\times 15 \\
& \Rightarrow -11880 \\
\end{align}\]
6. Coefficient of ${{x}^{6}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of x in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{6}}{}^{12}{{C}_{6}}\times {}^{6}{{C}_{1}} \\
& \Rightarrow \dfrac{12!}{6!6!}\times \dfrac{6!}{1!5!} \\
& \Rightarrow 924\times 6 \\
& \Rightarrow 5544 \\
\end{align}\]
7. Coefficient of ${{x}^{7}}$ in ${{\left( 1-x \right)}^{12}}\times $ coefficient of ${{x}^{0}}$ in ${{\left( 1+x \right)}^{6}}$.
\[\begin{align}
& \Rightarrow {{\left( -1 \right)}^{7}}{}^{12}{{C}_{7}}\times {}^{6}{{C}_{0}} \\
& \Rightarrow \dfrac{-12!}{7!6!}\times \dfrac{6!}{0!6!} \\
& \Rightarrow -792\times 1 \\
& \Rightarrow -792 \\
\end{align}\]
Now, adding all these combinations will give us a coefficient of ${{x}^{7}}$. Hence, the coefficient of ${{x}^{7}}$ is \[\Rightarrow -12+396-3300+9900-11880+5544-792=-144\].
Therefore, coefficient of ${{x}^{7}}$ in ${{\left( 1-x-{{x}^{2}}+{{x}^{3}} \right)}^{6}}$ is -144.
Therefore, option A is the correct answer.
Note: Students should take care while evaluating ${}^{n}{{C}_{r}}$. We are dealing with huge numbers here so take care of positive and negative signs. Students should not miss any combination and don't forget to take ${{\left( -1 \right)}^{n}}$ for coefficient of ${{x}^{n}}$ in ${{\left( 1-x \right)}^{p}}$. To ease calculation students should know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

