
The class marks of a frequency distribution are 6, 10, 14, 18, 22, 26, 30. Find its class size and class intervals.
Answer
233.1k+ views
Hint: We will find the difference between the two class marks distribution to find the class size. Then divide class size by 2 and subtract it from the class mark to calculate the lower limit. Add the class size and lower limit to calculate the upper limit.
Formula Used:
${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$
Complete step by step solution:
Find the difference of between 2 consecutive class marks:
The difference between the 2 class marks is $10 - 6 = 14 - 10 = 18 - 14 = 22 - 18 = 26 - 22 = 30 - 26 = 4$
Thus, the class size of the given frequency distribution is 4.
Find the class interval for class mark 6:
Apply the formula of class mark
${\rm{6 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 12 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 16$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 8$
Substitute the value of upper limit equation (1)
$ \Rightarrow 12 = 8 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 12 - 8 = 4$
Therefore, the lower limit is 4.
Find the class interval for class mark 10:
Apply the formula of class mark
${\rm{10 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 20 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 24$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 12$
Substitute the value of upper limit equation (1)
$ \Rightarrow 20 = 12 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 8$
Therefore, the lower limit is 8.
Similarly,
For others,
Hence the class intervals are
4 – 8
8 – 12
12 – 16
16 – 20
20 – 24
24 – 28
28 – 32
Thus, the class size of the given frequency distribution is 4.
Note: Do not get confused with the formula of the class mark and class size. The formula of class mark is ${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$ and class size is ${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$.
Formula Used:
${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$
Complete step by step solution:
Find the difference of between 2 consecutive class marks:
The difference between the 2 class marks is $10 - 6 = 14 - 10 = 18 - 14 = 22 - 18 = 26 - 22 = 30 - 26 = 4$
Thus, the class size of the given frequency distribution is 4.
Find the class interval for class mark 6:
Apply the formula of class mark
${\rm{6 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 12 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 16$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 8$
Substitute the value of upper limit equation (1)
$ \Rightarrow 12 = 8 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 12 - 8 = 4$
Therefore, the lower limit is 4.
Find the class interval for class mark 10:
Apply the formula of class mark
${\rm{10 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 20 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 24$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 12$
Substitute the value of upper limit equation (1)
$ \Rightarrow 20 = 12 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 8$
Therefore, the lower limit is 8.
Similarly,
For others,
Hence the class intervals are
4 – 8
8 – 12
12 – 16
16 – 20
20 – 24
24 – 28
28 – 32
Thus, the class size of the given frequency distribution is 4.
Note: Do not get confused with the formula of the class mark and class size. The formula of class mark is ${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$ and class size is ${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

