
The class marks of a frequency distribution are 6, 10, 14, 18, 22, 26, 30. Find its class size and class intervals.
Answer
164.4k+ views
Hint: We will find the difference between the two class marks distribution to find the class size. Then divide class size by 2 and subtract it from the class mark to calculate the lower limit. Add the class size and lower limit to calculate the upper limit.
Formula Used:
${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$
Complete step by step solution:
Find the difference of between 2 consecutive class marks:
The difference between the 2 class marks is $10 - 6 = 14 - 10 = 18 - 14 = 22 - 18 = 26 - 22 = 30 - 26 = 4$
Thus, the class size of the given frequency distribution is 4.
Find the class interval for class mark 6:
Apply the formula of class mark
${\rm{6 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 12 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 16$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 8$
Substitute the value of upper limit equation (1)
$ \Rightarrow 12 = 8 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 12 - 8 = 4$
Therefore, the lower limit is 4.
Find the class interval for class mark 10:
Apply the formula of class mark
${\rm{10 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 20 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 24$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 12$
Substitute the value of upper limit equation (1)
$ \Rightarrow 20 = 12 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 8$
Therefore, the lower limit is 8.
Similarly,
For others,
Hence the class intervals are
4 – 8
8 – 12
12 – 16
16 – 20
20 – 24
24 – 28
28 – 32
Thus, the class size of the given frequency distribution is 4.
Note: Do not get confused with the formula of the class mark and class size. The formula of class mark is ${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$ and class size is ${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$.
Formula Used:
${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$
Complete step by step solution:
Find the difference of between 2 consecutive class marks:
The difference between the 2 class marks is $10 - 6 = 14 - 10 = 18 - 14 = 22 - 18 = 26 - 22 = 30 - 26 = 4$
Thus, the class size of the given frequency distribution is 4.
Find the class interval for class mark 6:
Apply the formula of class mark
${\rm{6 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 12 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 16$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 8$
Substitute the value of upper limit equation (1)
$ \Rightarrow 12 = 8 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 12 - 8 = 4$
Therefore, the lower limit is 4.
Find the class interval for class mark 10:
Apply the formula of class mark
${\rm{10 = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$
$ \Rightarrow 20 = {\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}$….(1)
Apply the formula of class size
${\rm{4}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$ ….(2)
Add equations (1) and (2)
$2\,{\rm{upper}}\,{\rm{limit}} = 24$
$ \Rightarrow {\rm{upper}}\,{\rm{limit}} = 12$
Substitute the value of upper limit equation (1)
$ \Rightarrow 20 = 12 + {\rm{Lower}}\,{\rm{limit}}$
$ \Rightarrow {\rm{Lower}}\,{\rm{limit}} = 8$
Therefore, the lower limit is 8.
Similarly,
For others,
Hence the class intervals are
4 – 8
8 – 12
12 – 16
16 – 20
20 – 24
24 – 28
28 – 32
Thus, the class size of the given frequency distribution is 4.
Note: Do not get confused with the formula of the class mark and class size. The formula of class mark is ${\rm{Class}}\,{\rm{mark = }}\dfrac{{{\rm{Upper}}\,{\rm{limit + Lower}}\,{\rm{limit}}}}{{\rm{2}}}$ and class size is ${\rm{Class}}\,{\rm{Size}} = {\rm{Upper}}\,{\rm{limit}} - {\rm{Lower}}\,{\rm{limit}}$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
