
The capacitor shown in fig A2.11 is in steady state.

The energy stored in the capacitor is
(A) $C{I^2}{R^2}$
(B) $2C{I^2}{R^2}$
(C) $4C{I^2}{R^2}$
(D) None of these
Answer
136.8k+ views
Hint: R is resistor, C is capacitor and I is current flowing in wire. We will now consider wire containing capacitors as current is flowing in steady state in that branch of wire. We will find energy stored in the capacitor using $U = \dfrac{1}{2}C{V^2}$ formula where V is the potential difference across the capacitor.
Complete step by step answer

Fig A2.12.
Capacitor:
It is a two terminal device which is used to store energy in the form of an electric field. It is also known as condenser. Basically, two metallic plates are separated by a dielectric constant. S.I. unit is farad.
Resistor:
It is used to resist the flow of current. It is a passive element. S.I. unit is ohm.
Circuit:
It is a path used to conduct electricity. It consists of various elements like resistor, capacitor, wire, key, etc.
A steady state current flows through a capacitor (given). So the new circuit is as shown in fig A2.12.
Now applying loop rule or Kirchhoff’s voltage law in loop CDEAC, we get
$IR = iR$
$ \Rightarrow I = i$
Now, current that flows in AB branch
$AB = I + i$
$AB = 2I$
Therefore, voltage in branch AB will be
$\Delta V = iR$
$\Delta {V_{AB}} = 2IR$
Energy stored in capacitor will be
$U = \dfrac{1}{2}C\Delta {V_{AB}}^2$
$U = \dfrac{1}{2}C{(2IR)^2}$
$U = 2C{I^2}{R^2}$
Therefore, energy stored in the capacitor is $2C{I^2}{R^2}$. So, option B is the correct
Note
If we had used energy stored formula directly without applying loop rule then instead of 2I we would have used the same current flowing in the circuit say I which is wrong. Because of which we might have got $\dfrac{{C{I^2}{R^2}}}{2}$ as our solution. But this won’t satisfy any option hence we would choose the option.
Complete step by step answer

Fig A2.12.
Capacitor:
It is a two terminal device which is used to store energy in the form of an electric field. It is also known as condenser. Basically, two metallic plates are separated by a dielectric constant. S.I. unit is farad.
Resistor:
It is used to resist the flow of current. It is a passive element. S.I. unit is ohm.
Circuit:
It is a path used to conduct electricity. It consists of various elements like resistor, capacitor, wire, key, etc.
A steady state current flows through a capacitor (given). So the new circuit is as shown in fig A2.12.
Now applying loop rule or Kirchhoff’s voltage law in loop CDEAC, we get
$IR = iR$
$ \Rightarrow I = i$
Now, current that flows in AB branch
$AB = I + i$
$AB = 2I$
Therefore, voltage in branch AB will be
$\Delta V = iR$
$\Delta {V_{AB}} = 2IR$
Energy stored in capacitor will be
$U = \dfrac{1}{2}C\Delta {V_{AB}}^2$
$U = \dfrac{1}{2}C{(2IR)^2}$
$U = 2C{I^2}{R^2}$
Therefore, energy stored in the capacitor is $2C{I^2}{R^2}$. So, option B is the correct
Note
If we had used energy stored formula directly without applying loop rule then instead of 2I we would have used the same current flowing in the circuit say I which is wrong. Because of which we might have got $\dfrac{{C{I^2}{R^2}}}{2}$ as our solution. But this won’t satisfy any option hence we would choose the option.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2025 Question Paper PDFs with Solutions Free Download

Difference Between Density and Volume: JEE Main 2024

Difference Between Series and Parallel Circuits: JEE Main 2024

Difference Between Analog and Digital: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Collision - Important Concepts and Tips for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor
