
The area of an isosceles triangle is $9c{{m}^{2}}$. If the equal sides are $6cm$ in length, the angle between them is.
A. ${{60}^{0}}$
B. ${{30}^{0}}$
C. ${{90}^{0}}$
D. ${{45}^{0}}$
Answer
162.9k+ views
Hint: To solve this question, we will use the formula of the area of the triangle when two sides and an angle between are given. We will take any two sides as equal having value $6cm$ and any one angle which is included between them. We will substitute the length of the sides and area of the triangle in the formula and simplify it and determine the value of the angle.
Formula used:
Area of the triangle:
\[Area=\frac{1}{2}bc\sin A\]
Complete step-by-step solution:
We are given area of an isosceles triangle as $9 c{{m}^{2}}$ and the value of the length of the equal sides of the triangle as $6cm$ and we have to determine the angle between the equal sides.
Let us take the equal sides as $b,c$ that is $b=c=6 cm$.
Now we will use the area of the triangle and substitute the given value of area and sides of the triangle,
\[\begin{align}
& Area=\frac{1}{2}bc\sin A \\
& 9=\frac{1}{2}\times 6\times 6\sin A \\
& 9=18\sin A \\
& \frac{1}{2}=\sin A
\end{align}\]
We know that \[\sin {{30}^{0}}=\frac{1}{2}\] so,
\[\begin{align}
& \sin {{30}^{0}}=\sin A \\
& A={{30}^{0}}
\end{align}\]
The angle between the equal sides of the triangle is \[{{30}^{0}}\] when the area is $9c{{m}^{2}}$ and the equal sides are $6cm$ in length. Hence the correct option is (B).
Note:
A triangle having two equal sides and two equal angles is an isosceles triangle. If we draw a perpendicular from the apex of an isosceles triangle which is also called as the line of Symmetry, then it will divide the triangle into two congruent triangles which means both the triangle will be equal in length and angles.
According to the isosceles property, the angles opposite to sides which are equal in length are also equal.
Formula used:
Area of the triangle:
\[Area=\frac{1}{2}bc\sin A\]
Complete step-by-step solution:
We are given area of an isosceles triangle as $9 c{{m}^{2}}$ and the value of the length of the equal sides of the triangle as $6cm$ and we have to determine the angle between the equal sides.
Let us take the equal sides as $b,c$ that is $b=c=6 cm$.
Now we will use the area of the triangle and substitute the given value of area and sides of the triangle,
\[\begin{align}
& Area=\frac{1}{2}bc\sin A \\
& 9=\frac{1}{2}\times 6\times 6\sin A \\
& 9=18\sin A \\
& \frac{1}{2}=\sin A
\end{align}\]
We know that \[\sin {{30}^{0}}=\frac{1}{2}\] so,
\[\begin{align}
& \sin {{30}^{0}}=\sin A \\
& A={{30}^{0}}
\end{align}\]
The angle between the equal sides of the triangle is \[{{30}^{0}}\] when the area is $9c{{m}^{2}}$ and the equal sides are $6cm$ in length. Hence the correct option is (B).
Note:
A triangle having two equal sides and two equal angles is an isosceles triangle. If we draw a perpendicular from the apex of an isosceles triangle which is also called as the line of Symmetry, then it will divide the triangle into two congruent triangles which means both the triangle will be equal in length and angles.
According to the isosceles property, the angles opposite to sides which are equal in length are also equal.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
