
The area (in sq. units) of the largest rectangle \[ABCD\] whose vertices \[A\] and \[B\] lie on the \[x\] -axis and vertices \[\;C\] and \[\;D\] lie on the parabola \[y = {x^2} - 1\] below the x -axis, is
A.\[\dfrac{2}{{3\sqrt 3 }}\]
B.\[\dfrac{4}{3}\]
C.\[\dfrac{1}{{3\sqrt 3 }}\]
D.\[\dfrac{4}{{3\sqrt 3 }}\]
Answer
218.7k+ views
Hint: We will draw a diagram for the given problem. As the point \[A\] and \[B\]lie on the \[x\] -axis, then we can assume the coordinate of the points. Similarly, we will assume the coordinate of the points \[\;C\] and \[\;D\]. By using distance formula \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]we can find the length of the sides of the rectangle. We will find the area of the rectangle and from the derivative of the area we can find the maximum area.
Formula Used:
The distance formula is distance formula \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
The derivative formulas are
\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
To find the maxima or minima of a function \[f\], we equate the first order derivative of \[f\]to \[0\].
Complete answer:
1.Points \[\;C\] and \[\;D\] lie on the parabola \[y = {x^2} - 1\]. So the line joining by the points \[\;C\] and \[\;D\] must be parallel to \[x\] -axis. The \[y\] -axis divides the parabola equally.
2. So the \[x\] coordinate of \[\;C\] is the same as the \[x\] coordinate of \[\;D\] with a negative sign. Similarly the \[x\] coordinate of \[\;B\] is the same as the \[x\] coordinate of \[\;A\] with a negative sign.
3. Also the the \[x\] coordinate of \[\;C\]is same as the \[x\] coordinate of \[\;B\] and the \[x\] coordinate of \[\;D\]is same as the \[x\] coordinate of \[\;A\].
4. We assume the coordinates of the points \[\;A\] and \[\;B\] as \[\left( {a,0} \right)\] and \[\left( { - a,0} \right)\] respectively.

We will put \[x = a\] in the parabola equation\[y = {x^2} - 1\].
\[y = {a^2} - 1\].
We get the \[y\]coordinate of the points \[\;C\] and \[\;D\] . Let us assume the coordinates of \[\;C\] and \[\;D\]such that \[\left( { - a,{a^2} - 1} \right)\] and \[\left( {a,{a^2} - 1} \right)\] respectively.
Now we will apply distance formula \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] to calculate length of \[AB\] and \[BC\].
The length of \[AB\] is
\[AB = \sqrt {{{\left( { - a - a} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \] [Here \[{x_1} = a,{y_1} = 0;{x_2} = - a,{y_2} = 0\]]
\[\begin{array}{l} = \sqrt {{{\left( {2a} \right)}^2}} \\ = 2a\,{\rm{units}}\end{array}\]
The length of \[BC\] is
\[BC = \sqrt {{{\left( { - a - \left( { - a} \right)} \right)}^2} + {{\left( {{a^2} - 1 - 0} \right)}^2}} \] [Here \[{x_1} = - a,{y_1} = 0;{x_2} = - a,{y_2} = {a^2} - 1\]]
\[\begin{array}{l} = \sqrt {{{\left( {{a^2} - 1} \right)}^2}} \\ = \left( {{a^2} - 1} \right)\,{\rm{units}}\end{array}\]
The area of the rectangle \[ABCD\] is \[A = {\rm{length}} \times {\rm{width}}\]
\[{\rm{ = 2a}}\left( {{a^2} - 1} \right)\] sq. units
The derivative formulas are
\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
We will find the derivative of \[A = 2a\left( {{a^2} - 1} \right)\] with respect to \[a\].
\[\dfrac{{dA}}{{da}}{\rm{ = 2a}} \times {\rm{2a + 2}}\left( {{a^2} - 1} \right)\]
\[\begin{array}{l}{\rm{ = }}4{a^2}{\rm{ + 2}}{a^2} - 2\\ = 6{a^2} - 2\end{array}\]
Again derivative with respect to \[a\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12a}}\]
We can get maxima or minima point of any function when \[\dfrac{{dA}}{{da}} = 0\].
So, \[6{a^2} - 2 = 0\]
\[a = \pm \dfrac{1}{{\sqrt 3 }}\]
Now we will put values of \[a\] in \[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12a}}\] to find maxima or minima point
Putting \[a = - \dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) < 0\]
Since \[\dfrac{{{d^2}A}}{{d{a^2}}} < 0\]at \[a = - \dfrac{1}{{\sqrt 3 }}\], so \[A\] has maxima value at \[a = - \dfrac{1}{{\sqrt 3 }}\] .
Putting \[a = \dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) > 0\]
Since \[\dfrac{{{d^2}A}}{{d{a^2}}} > 0\]at \[a = \dfrac{1}{{\sqrt 3 }}\], so \[A\] has minimum value at \[a = \dfrac{1}{{\sqrt 3 }}\] .
Now we will put \[a = \dfrac{1}{{\sqrt 3 }}\] in \[A = 2a\left( {{a^2} - 1} \right)\]
\[A = 2 \cdot \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\left[ {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} - 1} \right]\]
\[ = - \dfrac{2}{{\sqrt 3 }}\left[ {\dfrac{1}{3} - 1} \right]\]
\[ = \dfrac{4}{{3\sqrt 3 }}\,\,{\rm{sq}}{\rm{.}}\,{\rm{units}}\]
The maximum area of the rectangle is\[\dfrac{4}{{3\sqrt 3 }}\,\,{\rm{sq}}{\rm{.}}\,{\rm{units}}\]. Hence option D is correct.
Note: Students are often confused with the maxima and minima points of a function. Remember that if \[\dfrac{{{d^2}F}}{{d{x^2}}} < 0\] at \[x = a\], then the value of the function at \[x = a\] will be maximum and if \[\dfrac{{{d^2}F}}{{d{x^2}}} > 0\] at \[x = a\], then the value of the function at \[x = a\] will be minimum.
Formula Used:
The distance formula is distance formula \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
The derivative formulas are
\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
To find the maxima or minima of a function \[f\], we equate the first order derivative of \[f\]to \[0\].
Complete answer:
1.Points \[\;C\] and \[\;D\] lie on the parabola \[y = {x^2} - 1\]. So the line joining by the points \[\;C\] and \[\;D\] must be parallel to \[x\] -axis. The \[y\] -axis divides the parabola equally.
2. So the \[x\] coordinate of \[\;C\] is the same as the \[x\] coordinate of \[\;D\] with a negative sign. Similarly the \[x\] coordinate of \[\;B\] is the same as the \[x\] coordinate of \[\;A\] with a negative sign.
3. Also the the \[x\] coordinate of \[\;C\]is same as the \[x\] coordinate of \[\;B\] and the \[x\] coordinate of \[\;D\]is same as the \[x\] coordinate of \[\;A\].
4. We assume the coordinates of the points \[\;A\] and \[\;B\] as \[\left( {a,0} \right)\] and \[\left( { - a,0} \right)\] respectively.

We will put \[x = a\] in the parabola equation\[y = {x^2} - 1\].
\[y = {a^2} - 1\].
We get the \[y\]coordinate of the points \[\;C\] and \[\;D\] . Let us assume the coordinates of \[\;C\] and \[\;D\]such that \[\left( { - a,{a^2} - 1} \right)\] and \[\left( {a,{a^2} - 1} \right)\] respectively.
Now we will apply distance formula \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] to calculate length of \[AB\] and \[BC\].
The length of \[AB\] is
\[AB = \sqrt {{{\left( { - a - a} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \] [Here \[{x_1} = a,{y_1} = 0;{x_2} = - a,{y_2} = 0\]]
\[\begin{array}{l} = \sqrt {{{\left( {2a} \right)}^2}} \\ = 2a\,{\rm{units}}\end{array}\]
The length of \[BC\] is
\[BC = \sqrt {{{\left( { - a - \left( { - a} \right)} \right)}^2} + {{\left( {{a^2} - 1 - 0} \right)}^2}} \] [Here \[{x_1} = - a,{y_1} = 0;{x_2} = - a,{y_2} = {a^2} - 1\]]
\[\begin{array}{l} = \sqrt {{{\left( {{a^2} - 1} \right)}^2}} \\ = \left( {{a^2} - 1} \right)\,{\rm{units}}\end{array}\]
The area of the rectangle \[ABCD\] is \[A = {\rm{length}} \times {\rm{width}}\]
\[{\rm{ = 2a}}\left( {{a^2} - 1} \right)\] sq. units
The derivative formulas are
\[\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u \cdot \dfrac{{dv}}{{dx}} + v \cdot \dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
We will find the derivative of \[A = 2a\left( {{a^2} - 1} \right)\] with respect to \[a\].
\[\dfrac{{dA}}{{da}}{\rm{ = 2a}} \times {\rm{2a + 2}}\left( {{a^2} - 1} \right)\]
\[\begin{array}{l}{\rm{ = }}4{a^2}{\rm{ + 2}}{a^2} - 2\\ = 6{a^2} - 2\end{array}\]
Again derivative with respect to \[a\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12a}}\]
We can get maxima or minima point of any function when \[\dfrac{{dA}}{{da}} = 0\].
So, \[6{a^2} - 2 = 0\]
\[a = \pm \dfrac{1}{{\sqrt 3 }}\]
Now we will put values of \[a\] in \[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12a}}\] to find maxima or minima point
Putting \[a = - \dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12}}\left( { - \dfrac{1}{{\sqrt 3 }}} \right) < 0\]
Since \[\dfrac{{{d^2}A}}{{d{a^2}}} < 0\]at \[a = - \dfrac{1}{{\sqrt 3 }}\], so \[A\] has maxima value at \[a = - \dfrac{1}{{\sqrt 3 }}\] .
Putting \[a = \dfrac{1}{{\sqrt 3 }}\]
\[\dfrac{{{d^2}A}}{{d{a^2}}}{\rm{ = 12}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) > 0\]
Since \[\dfrac{{{d^2}A}}{{d{a^2}}} > 0\]at \[a = \dfrac{1}{{\sqrt 3 }}\], so \[A\] has minimum value at \[a = \dfrac{1}{{\sqrt 3 }}\] .
Now we will put \[a = \dfrac{1}{{\sqrt 3 }}\] in \[A = 2a\left( {{a^2} - 1} \right)\]
\[A = 2 \cdot \left( { - \dfrac{1}{{\sqrt 3 }}} \right)\left[ {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} - 1} \right]\]
\[ = - \dfrac{2}{{\sqrt 3 }}\left[ {\dfrac{1}{3} - 1} \right]\]
\[ = \dfrac{4}{{3\sqrt 3 }}\,\,{\rm{sq}}{\rm{.}}\,{\rm{units}}\]
The maximum area of the rectangle is\[\dfrac{4}{{3\sqrt 3 }}\,\,{\rm{sq}}{\rm{.}}\,{\rm{units}}\]. Hence option D is correct.
Note: Students are often confused with the maxima and minima points of a function. Remember that if \[\dfrac{{{d^2}F}}{{d{x^2}}} < 0\] at \[x = a\], then the value of the function at \[x = a\] will be maximum and if \[\dfrac{{{d^2}F}}{{d{x^2}}} > 0\] at \[x = a\], then the value of the function at \[x = a\] will be minimum.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

