
The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be ${{45}^{\circ }}$. After walking a distance of $80$ meters towards the top, up a slope inclined at an angle of ${{30}^{\circ }}$ to the horizontal plane, the angle of elevation of the top of the hill becomes $75^{\circ}$. Then the height of the hill (in meters) is:
Answer
233.1k+ views
Hint: In order to solve the question we will first make the diagram by using all the information given in the question then we will introduce some of the variables such as x,y,z and h and after that we will use trigonometric identities of cos x , sin x and tan x so that we can find the height of the hill (in meters)
Formula Used:
$\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
Complete step by step solution:
Let the height of the hill be $h$ meters.

Image: Right angled triangle
In $\Delta ABE$, we have
$\cos {{30}^{\circ }}=\dfrac{x}{80}$ $\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\Rightarrow x=80\times \cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$, we get
$\Rightarrow x=80\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow x=40\sqrt{3}\,m$
And,
$\sin {{30}^{\circ }}=\dfrac{y}{80}$ $\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\Rightarrow y=80\times \sin {{30}^{\circ }}$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we get
$\Rightarrow y=80\times \dfrac{1}{2}$
$\Rightarrow y=40\,m$
In $\Delta ADC$, we have
$\tan {{45}^{\circ }}=\dfrac{h}{x+z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{45}^{\circ }}=1$. Therefore, we get
$\Rightarrow 1=\dfrac{h}{x+z}$
$\Rightarrow h=x+z$
Now substitute the value of $x$
$\Rightarrow h=40\sqrt{3}+z\,\,\,\,........\left( i \right)$
In $\Delta EDF$, we have
$\tan {{75}^{\circ }}=\dfrac{h-y}{z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{75}^{\circ }}=2+\sqrt{3}$. Therefore, we get
$\Rightarrow 2+\sqrt{3}=\dfrac{h-y}{z}$
$\Rightarrow z=\dfrac{h-y}{2+\sqrt{3}}$
Now, substitute the value of $y$
$\Rightarrow z=\dfrac{h-40}{2+\sqrt{3}}$
Now, put the value of $z$ in equation $\left( i \right)$
$\Rightarrow h=40\sqrt{3}+\dfrac{h-40}{2+\sqrt{3}}$
Take L.C.M.
$\Rightarrow h=\dfrac{40\sqrt{3}\left( 2+\sqrt{3} \right)+h-40}{2+\sqrt{3}}$
$\Rightarrow h=\dfrac{80\sqrt{3}+120+h-40}{2+\sqrt{3}}$
On cross multiplication, we get
$\Rightarrow h\left( 2+\sqrt{3} \right)=80\sqrt{3}+80+h$
$\Rightarrow h\left( 2+\sqrt{3} \right)-h=80\sqrt{3}+80$
On subtraction of like terms, we get
$\Rightarrow 2h+\sqrt{3}h-h=80\sqrt{3}+80$
On subtraction, we get
$\Rightarrow h+\sqrt{3}h=80+80\sqrt{3}$
$\Rightarrow h\left( 1+\sqrt{3} \right)=80\left( 1+\sqrt{3} \right)$
On canceling the common terms, we get
$\Rightarrow h=80\,m$
Hence, the height of the hill is $80\,m$.
Note: The difference between an angle of depression and an angle of elevation is that the latter refers to the angle between the horizontal and the object. Applying the idea of trigonometric functions is made easier by realising that the structure and the lighthouse form right angled triangles. It is required to be familiar with the trigonometric table of the tan function.
Formula Used:
$\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
Complete step by step solution:
Let the height of the hill be $h$ meters.

Image: Right angled triangle
In $\Delta ABE$, we have
$\cos {{30}^{\circ }}=\dfrac{x}{80}$ $\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\Rightarrow x=80\times \cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$, we get
$\Rightarrow x=80\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow x=40\sqrt{3}\,m$
And,
$\sin {{30}^{\circ }}=\dfrac{y}{80}$ $\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\Rightarrow y=80\times \sin {{30}^{\circ }}$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we get
$\Rightarrow y=80\times \dfrac{1}{2}$
$\Rightarrow y=40\,m$
In $\Delta ADC$, we have
$\tan {{45}^{\circ }}=\dfrac{h}{x+z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{45}^{\circ }}=1$. Therefore, we get
$\Rightarrow 1=\dfrac{h}{x+z}$
$\Rightarrow h=x+z$
Now substitute the value of $x$
$\Rightarrow h=40\sqrt{3}+z\,\,\,\,........\left( i \right)$
In $\Delta EDF$, we have
$\tan {{75}^{\circ }}=\dfrac{h-y}{z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{75}^{\circ }}=2+\sqrt{3}$. Therefore, we get
$\Rightarrow 2+\sqrt{3}=\dfrac{h-y}{z}$
$\Rightarrow z=\dfrac{h-y}{2+\sqrt{3}}$
Now, substitute the value of $y$
$\Rightarrow z=\dfrac{h-40}{2+\sqrt{3}}$
Now, put the value of $z$ in equation $\left( i \right)$
$\Rightarrow h=40\sqrt{3}+\dfrac{h-40}{2+\sqrt{3}}$
Take L.C.M.
$\Rightarrow h=\dfrac{40\sqrt{3}\left( 2+\sqrt{3} \right)+h-40}{2+\sqrt{3}}$
$\Rightarrow h=\dfrac{80\sqrt{3}+120+h-40}{2+\sqrt{3}}$
On cross multiplication, we get
$\Rightarrow h\left( 2+\sqrt{3} \right)=80\sqrt{3}+80+h$
$\Rightarrow h\left( 2+\sqrt{3} \right)-h=80\sqrt{3}+80$
On subtraction of like terms, we get
$\Rightarrow 2h+\sqrt{3}h-h=80\sqrt{3}+80$
On subtraction, we get
$\Rightarrow h+\sqrt{3}h=80+80\sqrt{3}$
$\Rightarrow h\left( 1+\sqrt{3} \right)=80\left( 1+\sqrt{3} \right)$
On canceling the common terms, we get
$\Rightarrow h=80\,m$
Hence, the height of the hill is $80\,m$.
Note: The difference between an angle of depression and an angle of elevation is that the latter refers to the angle between the horizontal and the object. Applying the idea of trigonometric functions is made easier by realising that the structure and the lighthouse form right angled triangles. It is required to be familiar with the trigonometric table of the tan function.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

