
The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be ${{45}^{\circ }}$. After walking a distance of $80$ meters towards the top, up a slope inclined at an angle of ${{30}^{\circ }}$ to the horizontal plane, the angle of elevation of the top of the hill becomes $75^{\circ}$. Then the height of the hill (in meters) is:
Answer
163.2k+ views
Hint: In order to solve the question we will first make the diagram by using all the information given in the question then we will introduce some of the variables such as x,y,z and h and after that we will use trigonometric identities of cos x , sin x and tan x so that we can find the height of the hill (in meters)
Formula Used:
$\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
Complete step by step solution:
Let the height of the hill be $h$ meters.

Image: Right angled triangle
In $\Delta ABE$, we have
$\cos {{30}^{\circ }}=\dfrac{x}{80}$ $\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\Rightarrow x=80\times \cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$, we get
$\Rightarrow x=80\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow x=40\sqrt{3}\,m$
And,
$\sin {{30}^{\circ }}=\dfrac{y}{80}$ $\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\Rightarrow y=80\times \sin {{30}^{\circ }}$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we get
$\Rightarrow y=80\times \dfrac{1}{2}$
$\Rightarrow y=40\,m$
In $\Delta ADC$, we have
$\tan {{45}^{\circ }}=\dfrac{h}{x+z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{45}^{\circ }}=1$. Therefore, we get
$\Rightarrow 1=\dfrac{h}{x+z}$
$\Rightarrow h=x+z$
Now substitute the value of $x$
$\Rightarrow h=40\sqrt{3}+z\,\,\,\,........\left( i \right)$
In $\Delta EDF$, we have
$\tan {{75}^{\circ }}=\dfrac{h-y}{z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{75}^{\circ }}=2+\sqrt{3}$. Therefore, we get
$\Rightarrow 2+\sqrt{3}=\dfrac{h-y}{z}$
$\Rightarrow z=\dfrac{h-y}{2+\sqrt{3}}$
Now, substitute the value of $y$
$\Rightarrow z=\dfrac{h-40}{2+\sqrt{3}}$
Now, put the value of $z$ in equation $\left( i \right)$
$\Rightarrow h=40\sqrt{3}+\dfrac{h-40}{2+\sqrt{3}}$
Take L.C.M.
$\Rightarrow h=\dfrac{40\sqrt{3}\left( 2+\sqrt{3} \right)+h-40}{2+\sqrt{3}}$
$\Rightarrow h=\dfrac{80\sqrt{3}+120+h-40}{2+\sqrt{3}}$
On cross multiplication, we get
$\Rightarrow h\left( 2+\sqrt{3} \right)=80\sqrt{3}+80+h$
$\Rightarrow h\left( 2+\sqrt{3} \right)-h=80\sqrt{3}+80$
On subtraction of like terms, we get
$\Rightarrow 2h+\sqrt{3}h-h=80\sqrt{3}+80$
On subtraction, we get
$\Rightarrow h+\sqrt{3}h=80+80\sqrt{3}$
$\Rightarrow h\left( 1+\sqrt{3} \right)=80\left( 1+\sqrt{3} \right)$
On canceling the common terms, we get
$\Rightarrow h=80\,m$
Hence, the height of the hill is $80\,m$.
Note: The difference between an angle of depression and an angle of elevation is that the latter refers to the angle between the horizontal and the object. Applying the idea of trigonometric functions is made easier by realising that the structure and the lighthouse form right angled triangles. It is required to be familiar with the trigonometric table of the tan function.
Formula Used:
$\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
Complete step by step solution:
Let the height of the hill be $h$ meters.

Image: Right angled triangle
In $\Delta ABE$, we have
$\cos {{30}^{\circ }}=\dfrac{x}{80}$ $\left[ \cos x=\dfrac{Base}{Hypotenuse} \right]$
$\Rightarrow x=80\times \cos {{30}^{\circ }}$
We know that $\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}$, we get
$\Rightarrow x=80\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow x=40\sqrt{3}\,m$
And,
$\sin {{30}^{\circ }}=\dfrac{y}{80}$ $\left[ \sin x=\dfrac{Perpendicular}{Hypotenuse} \right]$
$\Rightarrow y=80\times \sin {{30}^{\circ }}$
We know that $\sin {{30}^{\circ }}=\dfrac{1}{2}$, we get
$\Rightarrow y=80\times \dfrac{1}{2}$
$\Rightarrow y=40\,m$
In $\Delta ADC$, we have
$\tan {{45}^{\circ }}=\dfrac{h}{x+z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{45}^{\circ }}=1$. Therefore, we get
$\Rightarrow 1=\dfrac{h}{x+z}$
$\Rightarrow h=x+z$
Now substitute the value of $x$
$\Rightarrow h=40\sqrt{3}+z\,\,\,\,........\left( i \right)$
In $\Delta EDF$, we have
$\tan {{75}^{\circ }}=\dfrac{h-y}{z}$ $\left[ \tan x=\dfrac{Perpendicular}{Base} \right]$
We know that $\tan {{75}^{\circ }}=2+\sqrt{3}$. Therefore, we get
$\Rightarrow 2+\sqrt{3}=\dfrac{h-y}{z}$
$\Rightarrow z=\dfrac{h-y}{2+\sqrt{3}}$
Now, substitute the value of $y$
$\Rightarrow z=\dfrac{h-40}{2+\sqrt{3}}$
Now, put the value of $z$ in equation $\left( i \right)$
$\Rightarrow h=40\sqrt{3}+\dfrac{h-40}{2+\sqrt{3}}$
Take L.C.M.
$\Rightarrow h=\dfrac{40\sqrt{3}\left( 2+\sqrt{3} \right)+h-40}{2+\sqrt{3}}$
$\Rightarrow h=\dfrac{80\sqrt{3}+120+h-40}{2+\sqrt{3}}$
On cross multiplication, we get
$\Rightarrow h\left( 2+\sqrt{3} \right)=80\sqrt{3}+80+h$
$\Rightarrow h\left( 2+\sqrt{3} \right)-h=80\sqrt{3}+80$
On subtraction of like terms, we get
$\Rightarrow 2h+\sqrt{3}h-h=80\sqrt{3}+80$
On subtraction, we get
$\Rightarrow h+\sqrt{3}h=80+80\sqrt{3}$
$\Rightarrow h\left( 1+\sqrt{3} \right)=80\left( 1+\sqrt{3} \right)$
On canceling the common terms, we get
$\Rightarrow h=80\,m$
Hence, the height of the hill is $80\,m$.
Note: The difference between an angle of depression and an angle of elevation is that the latter refers to the angle between the horizontal and the object. Applying the idea of trigonometric functions is made easier by realising that the structure and the lighthouse form right angled triangles. It is required to be familiar with the trigonometric table of the tan function.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
