
What is the symmetric part of matrix $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$?
A. $\begin{bmatrix}0&{ - 2}&{ - 1}\\{ - 2}&0&{ - 2}\\{ - 1}&{ - 2}&0\end{bmatrix}$
B. $\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
C. $\begin{bmatrix}1&4&{ - 3}\\2&8&0\\3&0&7\end{bmatrix}$
D. $\begin{bmatrix}0&{ - 2}&1\\2&0&2\\{ - 1}&2&0\end{bmatrix}$
Answer
164.4k+ views
Hint: Using the fact that any matrix A can be written as the sum of a symmetric and a skew symmetric matrix we can solve the given problem.
Formula Used:
If $A$ be a matrix and $A'$ be its transpose then $A$ can be decomposed in two parts as
$A = \dfrac{1}{2}\left( {A + A'} \right)\, + \dfrac{1}{2}\left( {A - A'} \right)$
Where,
Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric part of matrix =$\dfrac{1}{2}\left( {A - A'} \right)$
Complete step by step solution:
Given -$A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
We know that if $A$ be a matrix and$A'$be its transpose then the symmetric part of matrix is given by Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Since $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
So, $A' = \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
Now,
$\dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix} + \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
$ \Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}2&8&6\\8&{16}&0\\6&0&{14}\end{bmatrix}$
$\Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
∴ Symmetric part =$\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
Option ‘B’ is correct
Note: Students may get confused in formula and wrong application of formula will give wrong answer. Correct formulas are –
Symmetric part = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric =$\dfrac{1}{2}\left( {A - A'} \right)$
Formula Used:
If $A$ be a matrix and $A'$ be its transpose then $A$ can be decomposed in two parts as
$A = \dfrac{1}{2}\left( {A + A'} \right)\, + \dfrac{1}{2}\left( {A - A'} \right)$
Where,
Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric part of matrix =$\dfrac{1}{2}\left( {A - A'} \right)$
Complete step by step solution:
Given -$A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
We know that if $A$ be a matrix and$A'$be its transpose then the symmetric part of matrix is given by Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Since $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
So, $A' = \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
Now,
$\dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix} + \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
$ \Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}2&8&6\\8&{16}&0\\6&0&{14}\end{bmatrix}$
$\Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
∴ Symmetric part =$\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
Option ‘B’ is correct
Note: Students may get confused in formula and wrong application of formula will give wrong answer. Correct formulas are –
Symmetric part = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric =$\dfrac{1}{2}\left( {A - A'} \right)$
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
