
What is the symmetric part of matrix $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$?
A. $\begin{bmatrix}0&{ - 2}&{ - 1}\\{ - 2}&0&{ - 2}\\{ - 1}&{ - 2}&0\end{bmatrix}$
B. $\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
C. $\begin{bmatrix}1&4&{ - 3}\\2&8&0\\3&0&7\end{bmatrix}$
D. $\begin{bmatrix}0&{ - 2}&1\\2&0&2\\{ - 1}&2&0\end{bmatrix}$
Answer
232.8k+ views
Hint: Using the fact that any matrix A can be written as the sum of a symmetric and a skew symmetric matrix we can solve the given problem.
Formula Used:
If $A$ be a matrix and $A'$ be its transpose then $A$ can be decomposed in two parts as
$A = \dfrac{1}{2}\left( {A + A'} \right)\, + \dfrac{1}{2}\left( {A - A'} \right)$
Where,
Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric part of matrix =$\dfrac{1}{2}\left( {A - A'} \right)$
Complete step by step solution:
Given -$A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
We know that if $A$ be a matrix and$A'$be its transpose then the symmetric part of matrix is given by Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Since $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
So, $A' = \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
Now,
$\dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix} + \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
$ \Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}2&8&6\\8&{16}&0\\6&0&{14}\end{bmatrix}$
$\Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
∴ Symmetric part =$\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
Option ‘B’ is correct
Note: Students may get confused in formula and wrong application of formula will give wrong answer. Correct formulas are –
Symmetric part = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric =$\dfrac{1}{2}\left( {A - A'} \right)$
Formula Used:
If $A$ be a matrix and $A'$ be its transpose then $A$ can be decomposed in two parts as
$A = \dfrac{1}{2}\left( {A + A'} \right)\, + \dfrac{1}{2}\left( {A - A'} \right)$
Where,
Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric part of matrix =$\dfrac{1}{2}\left( {A - A'} \right)$
Complete step by step solution:
Given -$A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
We know that if $A$ be a matrix and$A'$be its transpose then the symmetric part of matrix is given by Symmetric part of matrix = $\dfrac{1}{2}\left( {A + A'} \right)$
Since $A = \begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix}$
So, $A' = \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
Now,
$\dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}1&2&4\\6&8&2\\2&{ - 2}&7\end{bmatrix} + \begin{bmatrix}1&6&2\\2&8&{ - 2}\\4&2&7\end{bmatrix}$
$ \Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \dfrac{1}{2}\begin{bmatrix}2&8&6\\8&{16}&0\\6&0&{14}\end{bmatrix}$
$\Rightarrow \dfrac{1}{2}\left( {A + A'} \right) = \begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
∴ Symmetric part =$\begin{bmatrix}1&4&3\\4&8&0\\3&0&7\end{bmatrix}$
Option ‘B’ is correct
Note: Students may get confused in formula and wrong application of formula will give wrong answer. Correct formulas are –
Symmetric part = $\dfrac{1}{2}\left( {A + A'} \right)$
Skew symmetric =$\dfrac{1}{2}\left( {A - A'} \right)$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

