
What is the sum of the series \[\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + ...\] up to \[11\] terms?
A. \[\dfrac{{120}}{{121}}\]
B. \[\dfrac{{143}}{{144}}\]
C. 1
D. \[\dfrac{{144}}{{143}}\]
Answer
216.6k+ views
Hint: First, using the terms of the series find the general equation of the \[{n^{th}}\] term. Simplify the equation of the \[{n^{th}}\] term. After that, calculate the first \[11\] terms of the series using the \[{n^{th}}\] term and add them to get the required answer.
Formula Used:
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
Complete step by step solution:
The given series is \[\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + ...\].
Let’s calculate the general equation of the \[{n^{th}}\] term of the given series.
Clearly, each term of the given series is in the form \[\dfrac{{3 + 2\left( {n - 1} \right)}}{{{{\left( {n\left( {n + 1} \right)} \right)}^2}}}\].
So, the \[{n^{th}}\] term of the series is \[{a_n} = \dfrac{{3 + 2\left( {n - 1} \right)}}{{{{\left( {n\left( {n + 1} \right)} \right)}^2}}}\].
Let’s simplify the general term.
\[{a_n} = \dfrac{{3 + 2n - 2}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{{2n + 1}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{{{{\left( {n + 1} \right)}^2} - {n^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
Simplify the above term.
\[{a_n} = \dfrac{{{{\left( {n + 1} \right)}^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}} - \dfrac{{{n^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}\]
Let consider \[{S_{11}}\] be the sum of the first \[11\] terms of the series.
Use the equation of the \[{n^{th}}\] term.
\[{S_{11}} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{{\left( {1 + 1} \right)}^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{{\left( {2 + 1} \right)}^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{{\left( {3 + 1} \right)}^2}}}} \right) + ... + \left( {\dfrac{1}{{1{1^2}}} - \dfrac{1}{{{{\left( {11 + 1} \right)}^2}}}} \right)\]
\[ \Rightarrow \]\[{S_{11}} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right) + ... + \left( {\dfrac{1}{{1{1^2}}} - \dfrac{1}{{1{2^2}}}} \right)\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{1{1^2}}} - \dfrac{1}{{1{2^2}}}\]
Cancel out the terms with opposite signs.
\[{S_{11}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{1{2^2}}}\]
\[ \Rightarrow \]\[{S_{11}} = 1 - \dfrac{1}{{144}}\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{{144 - 1}}{{144}}\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{{143}}{{144}}\]
Hence the correct option is B.
Note: A list of numbers in a specific order or pattern is called a sequence. The sum of the terms in a sequence is called a series.
The sum of \[n\] terms in any series is the addition of the first \[n\] terms in that series.
Formula Used:
\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
Complete step by step solution:
The given series is \[\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + ...\].
Let’s calculate the general equation of the \[{n^{th}}\] term of the given series.
Clearly, each term of the given series is in the form \[\dfrac{{3 + 2\left( {n - 1} \right)}}{{{{\left( {n\left( {n + 1} \right)} \right)}^2}}}\].
So, the \[{n^{th}}\] term of the series is \[{a_n} = \dfrac{{3 + 2\left( {n - 1} \right)}}{{{{\left( {n\left( {n + 1} \right)} \right)}^2}}}\].
Let’s simplify the general term.
\[{a_n} = \dfrac{{3 + 2n - 2}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{{2n + 1}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{{{{\left( {n + 1} \right)}^2} - {n^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
Simplify the above term.
\[{a_n} = \dfrac{{{{\left( {n + 1} \right)}^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}} - \dfrac{{{n^2}}}{{\left( {{n^2}{{\left( {n + 1} \right)}^2}} \right)}}\]
\[ \Rightarrow \]\[{a_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}\]
Let consider \[{S_{11}}\] be the sum of the first \[11\] terms of the series.
Use the equation of the \[{n^{th}}\] term.
\[{S_{11}} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{{\left( {1 + 1} \right)}^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{{\left( {2 + 1} \right)}^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{{\left( {3 + 1} \right)}^2}}}} \right) + ... + \left( {\dfrac{1}{{1{1^2}}} - \dfrac{1}{{{{\left( {11 + 1} \right)}^2}}}} \right)\]
\[ \Rightarrow \]\[{S_{11}} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right) + ... + \left( {\dfrac{1}{{1{1^2}}} - \dfrac{1}{{1{2^2}}}} \right)\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{1{1^2}}} - \dfrac{1}{{1{2^2}}}\]
Cancel out the terms with opposite signs.
\[{S_{11}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{1{2^2}}}\]
\[ \Rightarrow \]\[{S_{11}} = 1 - \dfrac{1}{{144}}\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{{144 - 1}}{{144}}\]
\[ \Rightarrow \]\[{S_{11}} = \dfrac{{143}}{{144}}\]
Hence the correct option is B.
Note: A list of numbers in a specific order or pattern is called a sequence. The sum of the terms in a sequence is called a series.
The sum of \[n\] terms in any series is the addition of the first \[n\] terms in that series.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

