
Solve the given function for k: $\begin{align}
& f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta },\text{ }for\text{ }\theta \ne \dfrac{\pi }{4} \\
& =\dfrac{k}{5}\text{ }for\text{ }\theta =\dfrac{\pi }{4}
\end{align}$
Answer
214.2k+ views
Hint: Any function $f\left( x \right)$ will be continuous at $x\to c$ , if
$\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$
$\Rightarrow LHL=RHL=\text{ Exact value of f}\left( x \right)\text{ at }x=c$
Use the above result to get the value of k. It means get LHL or RHL of $f\left( \theta \right)$ at $x\to \dfrac{\pi }{4}$ by applying $x\to {{\dfrac{\pi }{4}}^{-}}$ for LHL or applying $x\to {{\dfrac{\pi }{4}}^{+}}$ for RHL. Don’t calculate both (both will be same). Equate the calculated LHL or RHL to $\dfrac{k}{5}$ to get the answer. Use the following results:
$\begin{align}
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2},\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \\
\end{align}$
Complete step-by-step solution -
Given expression in the problem is
$\begin{align}
& f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta },\text{ }for\text{ }\theta \ne \dfrac{\pi }{4} \\
& f\left( \theta \right)=\dfrac{k}{5},\text{ }for\text{ }\theta =\dfrac{\pi }{4} \\
\end{align}$
As we know any function will be continuous if the left-hand limit to any function and right-hand limit to the same function are equal to the exact value of that function at that point. It can be written mathematically as
$\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)..............\left( i \right)$
Now, as we are given a function $f\left( \theta \right)$ defined with respect to $\theta =\dfrac{\pi }{4}$ and $\theta \ne \dfrac{\pi }{4}$
So, we need to calculate value of $\underset{\theta \to \dfrac{\pi }{4}}{\mathop{\lim }}\,,\underset{\theta \to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,$and $\underset{\theta \to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,$ and hence, we need to equate them to get value of k.
So, LHL can be calculated as
$LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f\left( \theta \right)$
As $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ for $\theta \ne \dfrac{\pi }{4}$ .So, we need to replace $f\left( \theta \right)$ by $\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$
$LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta } \right)$
Now, we can put $\theta =\dfrac{\pi }{4}-h$ , where $h\to 0$ .Hence, we can get LHL w.r.t ‘h’ as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\tan \left( \dfrac{\pi }{4}-h \right)}{1-\sqrt{2}\sin \left( \dfrac{\pi }{4}-h \right)}..........\left( ii \right)$
Now, as we know the identities of $\tan \left( A-B \right)$ and $\sin \left( A-B \right)$ are given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\operatorname{tanB}}............\left( iii \right)$
$\sin \left( A-B \right)=\sin A\operatorname{cosB}-\cos A\sin B.............\left( iv \right)$
So, we can simplify the equation (ii) with the help of above equations as
$\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( \dfrac{\tan \dfrac{\pi }{4}-\tanh }{1+\tan \dfrac{\pi }{4}\tanh } \right)}{1-\sqrt{2}\left( \sin \dfrac{\pi }{4}\cosh -\cos \dfrac{\pi }{4}\sinh \right)} \\
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+\tan \dfrac{\pi }{4}\tanh \right)-\left( \tan \dfrac{\pi }{4}-\tanh \right)}{\left( 1+\tan \dfrac{\pi }{4}\tanh \right)\left[ 1-\sqrt{2}\left( \sin \dfrac{\pi }{4}\cosh -\cos \dfrac{\pi }{4}\sinh \right) \right]} \\
\end{align}$
Now, as we know
$\tan \dfrac{\pi }{4}=1$ and $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
So, we get
\[\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1+\tanh -1+\tanh }{\left( 1+\tanh \right)\left[ 1-\sqrt{2}\left( \dfrac{\cosh }{\sqrt{2}}-\dfrac{\sinh }{\sqrt{2}} \right) \right]} \\
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\tanh }{\left( 1+\tanh \right)\left[ 1-\cosh +\sinh \right]} \\
\end{align}\]
We know
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
So, we can get LHL as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sinh }{\cosh \left( 1+\tanh \right)\left[ 1-\cosh +\sinh \right]}$
We know
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \\
\end{align}$
So, we can re-write LHL using the above identities as
$\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\times 2\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ 1-\left( 1-2{{\sin }^{2}}\dfrac{h}{2} \right)+2\sin \dfrac{h}{2}\cos \dfrac{h}{2} \right]} \\
& \Rightarrow LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{4\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ 2{{\sin }^{2}}\dfrac{h}{2}+2\sin \dfrac{h}{2}\cos \dfrac{h}{2} \right]} \\
& \Rightarrow LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{4\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{2\cosh \left( 1+\tanh \right)\left( \sin \dfrac{h}{2} \right)\left[ \sin \dfrac{h}{2}+\cos \dfrac{h}{2} \right]} \\
\end{align}$
Now, cancelling out the term $2\sin \dfrac{h}{2}$ from numerator and denominator, we get LHL as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ \sin \dfrac{h}{2}+\cos \dfrac{h}{2} \right]}$
Now we can apply limit to the given expression i.e. $h\to 0$ using the results
$\begin{align}
& \cos {{0}^{\circ }}=1 \\
& \tan {{0}^{\circ }}=0 \\
& \sin {{0}^{\circ }}=0 \\
\end{align}$
Hence, we get value of LHL as
$\begin{align}
& LHL=\dfrac{2\times 1}{1\left( 1 \right)\left( 0+1 \right)}=2 \\
& LHL=2.................\left( v \right) \\
\end{align}$
Now, we can calculate RHL by the same approach and using $\theta =h+\dfrac{\pi }{4}$ , where $h\to 0$ . We will get RHL as 2 as well. But we don not need to calculate RHL to get value of k. We can directly equate $\dfrac{k}{5}$ to 2 to get the value of k as LHL = RHL = value of function at that point. Hence, as we know
$\underset{\theta \to \dfrac{\pi }{4}}{\mathop{\lim }}\,f\left( \theta \right)=\dfrac{k}{5}$
Hence, we can write equation using equation (i) as
$\dfrac{k}{5}=2$
On cross-multiplying, we get k as
$k=10$
Hence, k = 10 is the answer of the problem.
Note: We do not need to calculate LHL or RHL i.e. any of them. It is done in the problem for better understanding of the problem. We can put $x\to \dfrac{\pi }{4}$ to the function $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ directly. As it has not involvement of any special function like modulus, greatest integer etc. So, as the function will give same value for $x\to {{\dfrac{\pi }{4}}^{-}},x\to {{\dfrac{\pi }{4}}^{+}}$ and hence, for $x\to \dfrac{\pi }{4}$ as well. So, one may put $x\to \dfrac{\pi }{4}$ to $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ directly and answer will be same. And use this concept for future reference as well.
In the given solution, we do not need to calculate RHL, as LHL = RHL, which is already mentioned in starting of the solution. So, do not waste your time for that. Hence, directly put $LHL=\dfrac{k}{5}$ to get the answer.
One may get confuse with the identities of $\cos \theta $ and $\sin \theta $ mentioned in the problem. As one may not be familiar with that. So, observe formula of $\cos 2\theta $ and $\sin 2\theta $ as
$\begin{align}
& \cos 2\theta =1-2{{\sin }^{2}}\theta =2{{\cos }^{2}}\theta -1={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \sin 2\theta =2\sin \theta \cos \theta \\
\end{align}$
Now, replace $2\theta $ in the above identities by $\theta $ i.e. $\theta $ by $\dfrac{\theta }{2}$ in same ratio. So, you will get the same results written in the solution.
$\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)$
$\Rightarrow LHL=RHL=\text{ Exact value of f}\left( x \right)\text{ at }x=c$
Use the above result to get the value of k. It means get LHL or RHL of $f\left( \theta \right)$ at $x\to \dfrac{\pi }{4}$ by applying $x\to {{\dfrac{\pi }{4}}^{-}}$ for LHL or applying $x\to {{\dfrac{\pi }{4}}^{+}}$ for RHL. Don’t calculate both (both will be same). Equate the calculated LHL or RHL to $\dfrac{k}{5}$ to get the answer. Use the following results:
$\begin{align}
& \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B} \\
& \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B \\
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2},\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \\
\end{align}$
Complete step-by-step solution -
Given expression in the problem is
$\begin{align}
& f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta },\text{ }for\text{ }\theta \ne \dfrac{\pi }{4} \\
& f\left( \theta \right)=\dfrac{k}{5},\text{ }for\text{ }\theta =\dfrac{\pi }{4} \\
\end{align}$
As we know any function will be continuous if the left-hand limit to any function and right-hand limit to the same function are equal to the exact value of that function at that point. It can be written mathematically as
$\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to c}{\mathop{\lim }}\,f\left( x \right)..............\left( i \right)$
Now, as we are given a function $f\left( \theta \right)$ defined with respect to $\theta =\dfrac{\pi }{4}$ and $\theta \ne \dfrac{\pi }{4}$
So, we need to calculate value of $\underset{\theta \to \dfrac{\pi }{4}}{\mathop{\lim }}\,,\underset{\theta \to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,$and $\underset{\theta \to {{\dfrac{\pi }{4}}^{+}}}{\mathop{\lim }}\,$ and hence, we need to equate them to get value of k.
So, LHL can be calculated as
$LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,f\left( \theta \right)$
As $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ for $\theta \ne \dfrac{\pi }{4}$ .So, we need to replace $f\left( \theta \right)$ by $\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$
$LHL=\underset{x\to {{\dfrac{\pi }{4}}^{-}}}{\mathop{\lim }}\,\left( \dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta } \right)$
Now, we can put $\theta =\dfrac{\pi }{4}-h$ , where $h\to 0$ .Hence, we can get LHL w.r.t ‘h’ as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\tan \left( \dfrac{\pi }{4}-h \right)}{1-\sqrt{2}\sin \left( \dfrac{\pi }{4}-h \right)}..........\left( ii \right)$
Now, as we know the identities of $\tan \left( A-B \right)$ and $\sin \left( A-B \right)$ are given as
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\operatorname{tanB}}............\left( iii \right)$
$\sin \left( A-B \right)=\sin A\operatorname{cosB}-\cos A\sin B.............\left( iv \right)$
So, we can simplify the equation (ii) with the help of above equations as
$\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\left( \dfrac{\tan \dfrac{\pi }{4}-\tanh }{1+\tan \dfrac{\pi }{4}\tanh } \right)}{1-\sqrt{2}\left( \sin \dfrac{\pi }{4}\cosh -\cos \dfrac{\pi }{4}\sinh \right)} \\
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1+\tan \dfrac{\pi }{4}\tanh \right)-\left( \tan \dfrac{\pi }{4}-\tanh \right)}{\left( 1+\tan \dfrac{\pi }{4}\tanh \right)\left[ 1-\sqrt{2}\left( \sin \dfrac{\pi }{4}\cosh -\cos \dfrac{\pi }{4}\sinh \right) \right]} \\
\end{align}$
Now, as we know
$\tan \dfrac{\pi }{4}=1$ and $\sin \dfrac{\pi }{4}=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$
So, we get
\[\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1+\tanh -1+\tanh }{\left( 1+\tanh \right)\left[ 1-\sqrt{2}\left( \dfrac{\cosh }{\sqrt{2}}-\dfrac{\sinh }{\sqrt{2}} \right) \right]} \\
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\tanh }{\left( 1+\tanh \right)\left[ 1-\cosh +\sinh \right]} \\
\end{align}\]
We know
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }$
So, we can get LHL as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\sinh }{\cosh \left( 1+\tanh \right)\left[ 1-\cosh +\sinh \right]}$
We know
$\begin{align}
& \cos \theta =1-2{{\sin }^{2}}\dfrac{\theta }{2} \\
& \sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} \\
\end{align}$
So, we can re-write LHL using the above identities as
$\begin{align}
& LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\times 2\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ 1-\left( 1-2{{\sin }^{2}}\dfrac{h}{2} \right)+2\sin \dfrac{h}{2}\cos \dfrac{h}{2} \right]} \\
& \Rightarrow LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{4\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ 2{{\sin }^{2}}\dfrac{h}{2}+2\sin \dfrac{h}{2}\cos \dfrac{h}{2} \right]} \\
& \Rightarrow LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{4\sin \dfrac{h}{2}\cos \dfrac{h}{2}}{2\cosh \left( 1+\tanh \right)\left( \sin \dfrac{h}{2} \right)\left[ \sin \dfrac{h}{2}+\cos \dfrac{h}{2} \right]} \\
\end{align}$
Now, cancelling out the term $2\sin \dfrac{h}{2}$ from numerator and denominator, we get LHL as
$LHL=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{2\cos \dfrac{h}{2}}{\cosh \left( 1+\tanh \right)\left[ \sin \dfrac{h}{2}+\cos \dfrac{h}{2} \right]}$
Now we can apply limit to the given expression i.e. $h\to 0$ using the results
$\begin{align}
& \cos {{0}^{\circ }}=1 \\
& \tan {{0}^{\circ }}=0 \\
& \sin {{0}^{\circ }}=0 \\
\end{align}$
Hence, we get value of LHL as
$\begin{align}
& LHL=\dfrac{2\times 1}{1\left( 1 \right)\left( 0+1 \right)}=2 \\
& LHL=2.................\left( v \right) \\
\end{align}$
Now, we can calculate RHL by the same approach and using $\theta =h+\dfrac{\pi }{4}$ , where $h\to 0$ . We will get RHL as 2 as well. But we don not need to calculate RHL to get value of k. We can directly equate $\dfrac{k}{5}$ to 2 to get the value of k as LHL = RHL = value of function at that point. Hence, as we know
$\underset{\theta \to \dfrac{\pi }{4}}{\mathop{\lim }}\,f\left( \theta \right)=\dfrac{k}{5}$
Hence, we can write equation using equation (i) as
$\dfrac{k}{5}=2$
On cross-multiplying, we get k as
$k=10$
Hence, k = 10 is the answer of the problem.
Note: We do not need to calculate LHL or RHL i.e. any of them. It is done in the problem for better understanding of the problem. We can put $x\to \dfrac{\pi }{4}$ to the function $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ directly. As it has not involvement of any special function like modulus, greatest integer etc. So, as the function will give same value for $x\to {{\dfrac{\pi }{4}}^{-}},x\to {{\dfrac{\pi }{4}}^{+}}$ and hence, for $x\to \dfrac{\pi }{4}$ as well. So, one may put $x\to \dfrac{\pi }{4}$ to $f\left( \theta \right)=\dfrac{1-\tan \theta }{1-\sqrt{2}\sin \theta }$ directly and answer will be same. And use this concept for future reference as well.
In the given solution, we do not need to calculate RHL, as LHL = RHL, which is already mentioned in starting of the solution. So, do not waste your time for that. Hence, directly put $LHL=\dfrac{k}{5}$ to get the answer.
One may get confuse with the identities of $\cos \theta $ and $\sin \theta $ mentioned in the problem. As one may not be familiar with that. So, observe formula of $\cos 2\theta $ and $\sin 2\theta $ as
$\begin{align}
& \cos 2\theta =1-2{{\sin }^{2}}\theta =2{{\cos }^{2}}\theta -1={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \sin 2\theta =2\sin \theta \cos \theta \\
\end{align}$
Now, replace $2\theta $ in the above identities by $\theta $ i.e. $\theta $ by $\dfrac{\theta }{2}$ in same ratio. So, you will get the same results written in the solution.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

