
What is the solution of the equation ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} + {\left( {3 + 2\sqrt 2 } \right)^{8 - {x^2}}} = 6$?
A. $3 \pm 2\sqrt 2 $
B. $ \pm 1$
C. $ \pm 3\sqrt 3 , \pm 2\sqrt 2 $
D. $ \pm 7, \pm \sqrt 3 $
Answer
162.6k+ views
Hint: First we will assign variables to the expression ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}}$. Then we will solve the equation. After that, we substitute the value of the variable and calculate the value of $x$.
Formula Used:
The solution of the quadratic equation $a{x^2} + bx + c = 0$ is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step by step solution:
Given equation is ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} + {\left( {3 + 2\sqrt 2 } \right)^{8 - {x^2}}} = 6$.
Rewrite the given equation:
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} + \dfrac{1}{{{{\left( {3 + 2\sqrt 2 } \right)}^{{x^2} - 8}}}} = 6$ …..(1)
Assume that ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = t$
Substitute ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = t$ in the equation (1)
$ \Rightarrow t + \dfrac{1}{t} = 6$
Simplify the left side expression of the equation
$ \Rightarrow \dfrac{{{t^2} + 1}}{t} = 6$
Multiply $t$ both sides
$ \Rightarrow {t^2} + 1 = 6t$
Subtract $6t$ from both sides
$ \Rightarrow {t^2} - 6t + 1 = 0$
Now compare the above equation with the standard form of the quadratic equation $a{x^2} + bx + c = 0$.
$a = 1, b = - 6, c = 1$
Now apply the quadratic formula to solve ${t^2} - 6t + 1 = 0$
$ \Rightarrow t = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \cdot 1 \cdot 1} }}{{2 \cdot 1}}$
$ \Rightarrow t = \dfrac{{6 \pm \sqrt {36 - 4} }}{2}$
$ \Rightarrow t = \dfrac{{6 \pm \sqrt {32} }}{2}$
Rewrite $\sqrt {32} $ as $4\sqrt 2 $ since $32 = 16 \times 2$.
$ \Rightarrow t = \dfrac{{6 \pm 4\sqrt 2 }}{2}$
Take common 2 from numerator
$ \Rightarrow t = \dfrac{{2\left( {3 \pm 2\sqrt 2 } \right)}}{2}$
Cancel out 2 from the denominator and numerator.
$ \Rightarrow t = 3 \pm 2\sqrt 2 $
Now put the value of $t$.
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = 3 \pm 2\sqrt 2 $
Solve the equation ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 + 2\sqrt 2 } \right)$
${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = {\left( {3 + 2\sqrt 2 } \right)^1}$
Compare the power of expression
$ \Rightarrow {x^2} - 8 = 1$
Add 8 on both sides of equation
$ \Rightarrow {x^2} = 9$
$ \Rightarrow x = \pm 3$
Solve the equation ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right)$
${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right)$
Multiply $\dfrac{{\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$ with the right-side expression.
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right) \times \dfrac{{\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{\left( {3 - 2\sqrt 2 } \right)\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$
Apply the algebraic identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{{{\left( 3 \right)}^2} - {{\left( {2\sqrt 2 } \right)}^2}}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{9 - 8}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{1}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = {\left( {3 + 2\sqrt 2 } \right)^{ - 1}}$
Compare the power of the expression
$ \Rightarrow {x^2} - 8 = - 1$
$ \Rightarrow {x^2} = - 1 + 8$
$ \Rightarrow {x^2} = 7$
$ \Rightarrow x = \pm \sqrt 7 $
Thus the roots of $x$ is $ \pm 3$ and $ \pm \sqrt 7 $.
Option ‘D’ is correct
Note: We can apply quadratic formula to solve ${x^2} - 8 = - 1$ an ${x^2} - 8 = 1$. Therefore, the solution of ${x^2} - 7 = 0$ by using quadratic formula is $x = \dfrac{{ - 0 \pm \sqrt {{{\left( 0 \right)}^2} - 4 \cdot 1 \cdot \left( { - 7} \right)} }}{{2 \cdot 1}} \Rightarrow x = \pm \sqrt 7 $. . Therefore, the solution of ${x^2} - 9 = 0$ by using quadratic formula is $x = \dfrac{{ - 0 \pm \sqrt {{{\left( 0 \right)}^2} - 4 \cdot 1 \cdot \left( { - 9} \right)} }}{{2 \cdot 1}} \Rightarrow x = \pm 3$.
Formula Used:
The solution of the quadratic equation $a{x^2} + bx + c = 0$ is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step by step solution:
Given equation is ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} + {\left( {3 + 2\sqrt 2 } \right)^{8 - {x^2}}} = 6$.
Rewrite the given equation:
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} + \dfrac{1}{{{{\left( {3 + 2\sqrt 2 } \right)}^{{x^2} - 8}}}} = 6$ …..(1)
Assume that ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = t$
Substitute ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = t$ in the equation (1)
$ \Rightarrow t + \dfrac{1}{t} = 6$
Simplify the left side expression of the equation
$ \Rightarrow \dfrac{{{t^2} + 1}}{t} = 6$
Multiply $t$ both sides
$ \Rightarrow {t^2} + 1 = 6t$
Subtract $6t$ from both sides
$ \Rightarrow {t^2} - 6t + 1 = 0$
Now compare the above equation with the standard form of the quadratic equation $a{x^2} + bx + c = 0$.
$a = 1, b = - 6, c = 1$
Now apply the quadratic formula to solve ${t^2} - 6t + 1 = 0$
$ \Rightarrow t = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4 \cdot 1 \cdot 1} }}{{2 \cdot 1}}$
$ \Rightarrow t = \dfrac{{6 \pm \sqrt {36 - 4} }}{2}$
$ \Rightarrow t = \dfrac{{6 \pm \sqrt {32} }}{2}$
Rewrite $\sqrt {32} $ as $4\sqrt 2 $ since $32 = 16 \times 2$.
$ \Rightarrow t = \dfrac{{6 \pm 4\sqrt 2 }}{2}$
Take common 2 from numerator
$ \Rightarrow t = \dfrac{{2\left( {3 \pm 2\sqrt 2 } \right)}}{2}$
Cancel out 2 from the denominator and numerator.
$ \Rightarrow t = 3 \pm 2\sqrt 2 $
Now put the value of $t$.
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = 3 \pm 2\sqrt 2 $
Solve the equation ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 + 2\sqrt 2 } \right)$
${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = {\left( {3 + 2\sqrt 2 } \right)^1}$
Compare the power of expression
$ \Rightarrow {x^2} - 8 = 1$
Add 8 on both sides of equation
$ \Rightarrow {x^2} = 9$
$ \Rightarrow x = \pm 3$
Solve the equation ${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right)$
${\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right)$
Multiply $\dfrac{{\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$ with the right-side expression.
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \left( {3 - 2\sqrt 2 } \right) \times \dfrac{{\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{\left( {3 - 2\sqrt 2 } \right)\left( {3 + 2\sqrt 2 } \right)}}{{\left( {3 + 2\sqrt 2 } \right)}}$
Apply the algebraic identity $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{{{\left( 3 \right)}^2} - {{\left( {2\sqrt 2 } \right)}^2}}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{{9 - 8}}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = \dfrac{1}{{\left( {3 + 2\sqrt 2 } \right)}}$
$ \Rightarrow {\left( {3 + 2\sqrt 2 } \right)^{{x^2} - 8}} = {\left( {3 + 2\sqrt 2 } \right)^{ - 1}}$
Compare the power of the expression
$ \Rightarrow {x^2} - 8 = - 1$
$ \Rightarrow {x^2} = - 1 + 8$
$ \Rightarrow {x^2} = 7$
$ \Rightarrow x = \pm \sqrt 7 $
Thus the roots of $x$ is $ \pm 3$ and $ \pm \sqrt 7 $.
Option ‘D’ is correct
Note: We can apply quadratic formula to solve ${x^2} - 8 = - 1$ an ${x^2} - 8 = 1$. Therefore, the solution of ${x^2} - 7 = 0$ by using quadratic formula is $x = \dfrac{{ - 0 \pm \sqrt {{{\left( 0 \right)}^2} - 4 \cdot 1 \cdot \left( { - 7} \right)} }}{{2 \cdot 1}} \Rightarrow x = \pm \sqrt 7 $. . Therefore, the solution of ${x^2} - 9 = 0$ by using quadratic formula is $x = \dfrac{{ - 0 \pm \sqrt {{{\left( 0 \right)}^2} - 4 \cdot 1 \cdot \left( { - 9} \right)} }}{{2 \cdot 1}} \Rightarrow x = \pm 3$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
