
What is the solution of the differential equation \[dy - \sin x\sin ydx = 0\]?
A. \[{e^{\cos x}}\tan \dfrac{y}{2} = c\]
B. \[{e^{\cos x}}\tan y = c\]
C. \[\cos x\tan y = c\]
D. \[\cos x\sin y = c\]
Answer
218.4k+ views
Hint: The given differential equation consists of two variables that are x and y. First we will separate the variables of the given differential equation and integrate both sides to get required solution.
Formula Used: Integration formula of trigonometry identities:
\[\int {\sin xdx = - \cos x + c} \]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Half angle formula in trigonometry:
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
Quotient logarithm formula:
\[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution: Given differential equation is:
\[dy - \sin x\sin ydx = 0\]
The variables of the differential equation are x and y.
Now separates the variables of the equation:
\[ \Rightarrow dy = \sin x\sin ydx\]
Divide both sides by \[\sin y\]
\[ \Rightarrow \dfrac{{dy}}{{\sin y}} = \sin xdx\]
Apply half angle formula on \[\sin y\]:
\[ \Rightarrow \dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}} = \sin xdx\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}} = \int {\sin xdx} \] ….(i)
Divide \[{\cos ^2}\dfrac{y}{2}\] with the denominator and numerator of \[\int {\dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}} \]
\[ \Rightarrow \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} = \int {\sin xdx} \]
Assume that, \[{I_1} = \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} \]
Let \[\tan \dfrac{y}{2} = z\]
Different both sides
\[\dfrac{1}{2}{\sec ^2}\dfrac{y}{2}dy = dz\]
Substitute \[\dfrac{1}{2}{\sec ^2}\dfrac{y}{2}dy = dz\] and \[\tan \dfrac{y}{2} = z\] in \[{I_1} = \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} \]
\[{I_1} = \int {\dfrac{{dz}}{z}} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = \log \left( {\tan \dfrac{y}{2}} \right) + {c_1}\]
Now we will substitute \[\int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} = \log \left( {\tan \dfrac{y}{2}} \right) + {c_1}\] in equation (i)
\[ \Rightarrow \log \left( {\tan \dfrac{y}{2}} \right) = - \cos x + \log c\]
\[ \Rightarrow \log \left( {\tan \dfrac{y}{2}} \right) - \log c = - \cos x\]
Applying quotient rule:
\[ \Rightarrow \log \left( {\dfrac{{\tan \dfrac{y}{2}}}{c}} \right) = - \cos x\]
Applying the logarithm inverse formula :
\[ \Rightarrow \dfrac{{\tan \dfrac{y}{2}}}{c} = {e^{ - \cos x}}\]
Now simplify the above equation:
\[ \Rightarrow \dfrac{{\tan \dfrac{y}{2}}}{{{e^{ - \cos x}}}} = c\]
\[ \Rightarrow {e^{ - \cos x}}\tan \dfrac{y}{2} = c\]
Option ‘A’ is correct
Note: Students often do mistake to integrate \[\dfrac{{dy}}{{\sin y}} = \csc ydy\]. There are four formula to integrate \[\csc ydy\]. The integration formulas are \[\int {\csc xdx} = \left\{ {\begin{array}{*{20}{c}}{\log \left| {\csc x - \cot x} \right| + c}\\{ - \log \left| {\csc x + \cot x} \right| + c}\\{\dfrac{1}{2}\log \left| {\dfrac{{\cos x - 1}}{{\cos x + 1}}} \right| + c}\\{\log \left| {\tan \dfrac{x}{2}} \right| + c}\end{array}} \right.\]. If they used any of them except \[\int {\csc xdx} = \log \left( {\tan \dfrac{x}{2}} \right) + c\], then they will not get the correct answer.
Formula Used: Integration formula of trigonometry identities:
\[\int {\sin xdx = - \cos x + c} \]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Half angle formula in trigonometry:
\[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\]
Quotient logarithm formula:
\[\log a - \log b = \log \dfrac{a}{b}\]
Complete step by step solution: Given differential equation is:
\[dy - \sin x\sin ydx = 0\]
The variables of the differential equation are x and y.
Now separates the variables of the equation:
\[ \Rightarrow dy = \sin x\sin ydx\]
Divide both sides by \[\sin y\]
\[ \Rightarrow \dfrac{{dy}}{{\sin y}} = \sin xdx\]
Apply half angle formula on \[\sin y\]:
\[ \Rightarrow \dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}} = \sin xdx\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}} = \int {\sin xdx} \] ….(i)
Divide \[{\cos ^2}\dfrac{y}{2}\] with the denominator and numerator of \[\int {\dfrac{{dy}}{{2\sin \dfrac{y}{2}\cos \dfrac{y}{2}}}} \]
\[ \Rightarrow \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} = \int {\sin xdx} \]
Assume that, \[{I_1} = \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} \]
Let \[\tan \dfrac{y}{2} = z\]
Different both sides
\[\dfrac{1}{2}{\sec ^2}\dfrac{y}{2}dy = dz\]
Substitute \[\dfrac{1}{2}{\sec ^2}\dfrac{y}{2}dy = dz\] and \[\tan \dfrac{y}{2} = z\] in \[{I_1} = \int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} \]
\[{I_1} = \int {\dfrac{{dz}}{z}} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = \log \left( {\tan \dfrac{y}{2}} \right) + {c_1}\]
Now we will substitute \[\int {\dfrac{{{{\sec }^2}\dfrac{y}{2}dy}}{{2\tan \dfrac{y}{2}}}} = \log \left( {\tan \dfrac{y}{2}} \right) + {c_1}\] in equation (i)
\[ \Rightarrow \log \left( {\tan \dfrac{y}{2}} \right) = - \cos x + \log c\]
\[ \Rightarrow \log \left( {\tan \dfrac{y}{2}} \right) - \log c = - \cos x\]
Applying quotient rule:
\[ \Rightarrow \log \left( {\dfrac{{\tan \dfrac{y}{2}}}{c}} \right) = - \cos x\]
Applying the logarithm inverse formula :
\[ \Rightarrow \dfrac{{\tan \dfrac{y}{2}}}{c} = {e^{ - \cos x}}\]
Now simplify the above equation:
\[ \Rightarrow \dfrac{{\tan \dfrac{y}{2}}}{{{e^{ - \cos x}}}} = c\]
\[ \Rightarrow {e^{ - \cos x}}\tan \dfrac{y}{2} = c\]
Option ‘A’ is correct
Note: Students often do mistake to integrate \[\dfrac{{dy}}{{\sin y}} = \csc ydy\]. There are four formula to integrate \[\csc ydy\]. The integration formulas are \[\int {\csc xdx} = \left\{ {\begin{array}{*{20}{c}}{\log \left| {\csc x - \cot x} \right| + c}\\{ - \log \left| {\csc x + \cot x} \right| + c}\\{\dfrac{1}{2}\log \left| {\dfrac{{\cos x - 1}}{{\cos x + 1}}} \right| + c}\\{\log \left| {\tan \dfrac{x}{2}} \right| + c}\end{array}} \right.\]. If they used any of them except \[\int {\csc xdx} = \log \left( {\tan \dfrac{x}{2}} \right) + c\], then they will not get the correct answer.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

