
Simplify \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\] for \[\Delta ABC\].
A. \[\dfrac{{b - c}}{a}\]
B. \[\dfrac{{b + c}}{a}\]
C. \[\dfrac{a}{{b - c}}\]
d. \[\dfrac{a}{{b + c}}\]
Answer
164.4k+ views
Hint: We will multiply \[\sin \dfrac{{B + C}}{2}\]with the denominator and numerator of the given expression and apply trigonometry identity and the relation of the sum of all angles of the triangle to simplify the given expression. Then we will apply the sine law to find the value of \[\sin A\], \[\sin B\], \[\sin C\] and substitute it in the given expression to find the value of the given expression.
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Difference Between Natural and Whole Numbers: JEE Main 2024

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
