
Simplify \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\] for \[\Delta ABC\].
A. \[\dfrac{{b - c}}{a}\]
B. \[\dfrac{{b + c}}{a}\]
C. \[\dfrac{a}{{b - c}}\]
d. \[\dfrac{a}{{b + c}}\]
Answer
232.5k+ views
Hint: We will multiply \[\sin \dfrac{{B + C}}{2}\]with the denominator and numerator of the given expression and apply trigonometry identity and the relation of the sum of all angles of the triangle to simplify the given expression. Then we will apply the sine law to find the value of \[\sin A\], \[\sin B\], \[\sin C\] and substitute it in the given expression to find the value of the given expression.
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

