
Simplify \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\] for \[\Delta ABC\].
A. \[\dfrac{{b - c}}{a}\]
B. \[\dfrac{{b + c}}{a}\]
C. \[\dfrac{a}{{b - c}}\]
d. \[\dfrac{a}{{b + c}}\]
Answer
162.6k+ views
Hint: We will multiply \[\sin \dfrac{{B + C}}{2}\]with the denominator and numerator of the given expression and apply trigonometry identity and the relation of the sum of all angles of the triangle to simplify the given expression. Then we will apply the sine law to find the value of \[\sin A\], \[\sin B\], \[\sin C\] and substitute it in the given expression to find the value of the given expression.
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
