
Simplify \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\] for \[\Delta ABC\].
A. \[\dfrac{{b - c}}{a}\]
B. \[\dfrac{{b + c}}{a}\]
C. \[\dfrac{a}{{b - c}}\]
d. \[\dfrac{a}{{b + c}}\]
Answer
217.2k+ views
Hint: We will multiply \[\sin \dfrac{{B + C}}{2}\]with the denominator and numerator of the given expression and apply trigonometry identity and the relation of the sum of all angles of the triangle to simplify the given expression. Then we will apply the sine law to find the value of \[\sin A\], \[\sin B\], \[\sin C\] and substitute it in the given expression to find the value of the given expression.
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Formula used:
Trigonometry identity:
\[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Sine Law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:
Given expression is \[\dfrac{{\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{1}{2}A}}\]
Now multiply \[\sin \dfrac{{B + C}}{2}\] with denominator and numerator
\[ = \dfrac{{\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Now multiply 2 with denominator and numerator
\[ = \dfrac{{2\sin \dfrac{{B + C}}{2}\cos \dfrac{1}{2}\left( {B - C} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
Apply \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] in the numerator
\[ = \dfrac{{\sin \left( {\dfrac{{B + C}}{2} + \dfrac{{B - C}}{2}} \right) + \sin \left( {\dfrac{{B + C}}{2} - \dfrac{{B - C}}{2}} \right)}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{B + C}}{2}\sin \dfrac{1}{2}A}}\]
We know the sum angles of triangle is \[{180^ \circ }\] or \[\pi \].
\[A + B + C = \pi \]
\[ \Rightarrow B + C = \pi - A\]
Putting \[B + C = \pi - A\] in the denominator
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \dfrac{{\pi - A}}{2}\sin \dfrac{1}{2}A}}\]
\[ = \dfrac{{\sin B + \sin C}}{{2\sin \left( {\dfrac{\pi }{2} - \dfrac{A}{2}} \right)\sin \dfrac{1}{2}A}}\]
Apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \].
\[ = \dfrac{{\sin B + \sin C}}{{2\cos \dfrac{A}{2}\sin \dfrac{1}{2}A}}\]
Now applying the formula \[\sin 2\theta = 2\sin \theta \cos \theta \] in the denominator:
\[ = \dfrac{{\sin B + \sin C}}{{\sin A}}\] ….(i)
We know the sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c} = k\left( {say} \right)\]
\[\sin A = ak\], \[\sin B = bk\], and \[\sin C = ck\]
Substitute the value of \[\sin A\], \[\sin B\], \[\sin C\] in (i)
\[ = \dfrac{{bk + ck}}{{ak}}\]
\[ = \dfrac{{k\left( {b + c} \right)}}{{ak}}\]
Cancel k from the denominator and numerator
\[ = \dfrac{{b + c}}{a}\]
Hence option B is the correct option.
Note: Students often confused with formula \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\] and \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\]. If A > B , then \[2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)\]. If B > A, then \[2\sin A\cos B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)\].
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

