
What is the shortcut to finding the determinant of a $5 \times 5$ matrix?
Answer
161.1k+ views
Hint: A value called the determinant of a matrix $A$ , that we denote by $\det (A)$ or $\left| A \right|$ , is a scalar(number) obtained from the elements of a matrix by applying operations which is characteristic of the matrix. Use Laplace Expansion to get the determinant of any given matrix of order $n \times n$.
Formula Used:
Let $A = {\left[ {{a_{ij}}} \right]_{n \times n}}$ be an $n \times n$ matrix. If $n = 1$ , i.e., $A = \left[ {{a_{11}}} \right]$ , then we define $\det (A) = {a_{11}}$ . If $n > 1$ , we define $\det (A) = \sum\limits_{k = 1}^n {{{( - 1)}^{1 + k}}} {a_{1k}}\det ({A_{1k}})$.
Complete step by step Solution:
The evaluation of the determinant of an $n \times n$ matrix using the definition involves the summation of $n!$ terms, each term is defined as a product of $n$ factors. In this method, the elementary row operations are used to reduce the matrix to a triangular form. Then, the determinant of the upper-triangular or the lower-triangular matrix is evaluated by finding the product of the entries on the main diagonal.
We can use Laplace expansion to find the determinant of a $n \times n$ matrix. It reduces $n \times n$ determinants to that of $(n - 1) \times (n - 1)$ determinants. The formula expanded with respect to the ${i^{th}}$where $A = {\left[ {{a_{ij}}} \right]_{n \times n}}$ is:
$\det (A) = {( - 1)^{i + 1}}{a_{i1}}\det ({A_{i1}}) + \ldots + {( - 1)^{i + n}}{a_{in}}\det ({A_{in}})$
Where ${A_{ij}}$ is the $(n - 1) \times (n - 1)$ matrix obtained by erasing the row $i$ and the column $j$ from $A$ , with respect to $j$ we can write,
$\det (A) = {( - 1)^{j + 1}}{a_{1j}}\det ({A_{1j}}) + \ldots + {( - 1)^{j + n}}{a_{nj}}\det ({A_{nj}})$
The determinant’s linearity implies,
$\det (A) = \sum\limits_{j = 1}^n {{a_{1j}}} \det \left( {\begin{array}{*{20}{c}}
{{E_j}} \\
{{A_2}} \\
\vdots \\
{{A_n}}
\end{array}} \right)$
Where ${E_j}$ is the canonical basis of the rows i.e., ${E_j}$ is zero except at position $j$ where there is $1$ . Thus, we have to calculate the determinant
$\left| {\begin{array}{*{20}{c}}
0&0& \cdots &0 \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2(j - 1)}}} \\
\vdots & \vdots & \cdots & \vdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{n(j - 1)}}}
\end{array}\begin{array}{*{20}{c}}
1&0&0& \cdots \\
{{a_{2j}}}&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\vdots & \cdots & \vdots & \cdots \\
{{a_{nj}}}&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right|$
The whole column $j$ does not interfere in the computation of the determinant
$\left| {\begin{array}{*{20}{c}}
0&0& \cdots &0 \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2(j - 1)}}} \\
\vdots & \vdots & \cdots & \vdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{n(j - 1)}}}
\end{array}\begin{array}{*{20}{c}}
1&0&0& \cdots \\
0&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\vdots & \cdots & \vdots & \cdots \\
0&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right|$
Since, we know that interchanging two rows changes the sign of the determinant,
$\det \left( {\begin{array}{*{20}{c}}
{{E_j}} \\
{{A_2}} \\
\vdots \\
{{A_n}}
\end{array}} \right) = {( - 1)^{j - 1}}\left| {\begin{array}{*{20}{c}}
1&0&0& \cdots \\
0&{{a_{21}}}&{{a_{22}}}& \cdots \\
\vdots & \vdots & \cdots & \vdots \\
0&{{a_{n1}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0&0&0& \cdots \\
{{a_{2(j - 1)}}}&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\cdots & \vdots & \cdots & \vdots \\
{{a_{n(j - 1)}}}&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right| = {( - 1)^{1 + j}}\det ({A_{ij}})$
Altogether, we have the expansion along the first row: $\det (A) = {a_{11}}\det ({A_{i1}}) \pm \ldots \pm {a_{1n}}\det ({A_{1n}})$ .
Note: Note that the determinant $\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc$ is a special case of Laplace’s formula. The sign of the determinant changes if any two rows (or columns) are switched. If any two rows (or columns) in a determinant are identical or proportional then, the value of the determinant is zero.
Formula Used:
Let $A = {\left[ {{a_{ij}}} \right]_{n \times n}}$ be an $n \times n$ matrix. If $n = 1$ , i.e., $A = \left[ {{a_{11}}} \right]$ , then we define $\det (A) = {a_{11}}$ . If $n > 1$ , we define $\det (A) = \sum\limits_{k = 1}^n {{{( - 1)}^{1 + k}}} {a_{1k}}\det ({A_{1k}})$.
Complete step by step Solution:
The evaluation of the determinant of an $n \times n$ matrix using the definition involves the summation of $n!$ terms, each term is defined as a product of $n$ factors. In this method, the elementary row operations are used to reduce the matrix to a triangular form. Then, the determinant of the upper-triangular or the lower-triangular matrix is evaluated by finding the product of the entries on the main diagonal.
We can use Laplace expansion to find the determinant of a $n \times n$ matrix. It reduces $n \times n$ determinants to that of $(n - 1) \times (n - 1)$ determinants. The formula expanded with respect to the ${i^{th}}$where $A = {\left[ {{a_{ij}}} \right]_{n \times n}}$ is:
$\det (A) = {( - 1)^{i + 1}}{a_{i1}}\det ({A_{i1}}) + \ldots + {( - 1)^{i + n}}{a_{in}}\det ({A_{in}})$
Where ${A_{ij}}$ is the $(n - 1) \times (n - 1)$ matrix obtained by erasing the row $i$ and the column $j$ from $A$ , with respect to $j$ we can write,
$\det (A) = {( - 1)^{j + 1}}{a_{1j}}\det ({A_{1j}}) + \ldots + {( - 1)^{j + n}}{a_{nj}}\det ({A_{nj}})$
The determinant’s linearity implies,
$\det (A) = \sum\limits_{j = 1}^n {{a_{1j}}} \det \left( {\begin{array}{*{20}{c}}
{{E_j}} \\
{{A_2}} \\
\vdots \\
{{A_n}}
\end{array}} \right)$
Where ${E_j}$ is the canonical basis of the rows i.e., ${E_j}$ is zero except at position $j$ where there is $1$ . Thus, we have to calculate the determinant
$\left| {\begin{array}{*{20}{c}}
0&0& \cdots &0 \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2(j - 1)}}} \\
\vdots & \vdots & \cdots & \vdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{n(j - 1)}}}
\end{array}\begin{array}{*{20}{c}}
1&0&0& \cdots \\
{{a_{2j}}}&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\vdots & \cdots & \vdots & \cdots \\
{{a_{nj}}}&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right|$
The whole column $j$ does not interfere in the computation of the determinant
$\left| {\begin{array}{*{20}{c}}
0&0& \cdots &0 \\
{{a_{21}}}&{{a_{22}}}& \cdots &{{a_{2(j - 1)}}} \\
\vdots & \vdots & \cdots & \vdots \\
{{a_{n1}}}&{{a_{n2}}}& \cdots &{{a_{n(j - 1)}}}
\end{array}\begin{array}{*{20}{c}}
1&0&0& \cdots \\
0&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\vdots & \cdots & \vdots & \cdots \\
0&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right|$
Since, we know that interchanging two rows changes the sign of the determinant,
$\det \left( {\begin{array}{*{20}{c}}
{{E_j}} \\
{{A_2}} \\
\vdots \\
{{A_n}}
\end{array}} \right) = {( - 1)^{j - 1}}\left| {\begin{array}{*{20}{c}}
1&0&0& \cdots \\
0&{{a_{21}}}&{{a_{22}}}& \cdots \\
\vdots & \vdots & \cdots & \vdots \\
0&{{a_{n1}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0&0&0& \cdots \\
{{a_{2(j - 1)}}}&{{a_{2(j + 1)}}}& \cdots & \cdots \\
\cdots & \vdots & \cdots & \vdots \\
{{a_{n(j - 1)}}}&{{a_{n(j + 1)}}}& \cdots & \cdots
\end{array}\begin{array}{*{20}{c}}
0 \\
{{a_{2n}}} \\
\vdots \\
{{a_{nn}}}
\end{array}} \right| = {( - 1)^{1 + j}}\det ({A_{ij}})$
Altogether, we have the expansion along the first row: $\det (A) = {a_{11}}\det ({A_{i1}}) \pm \ldots \pm {a_{1n}}\det ({A_{1n}})$ .
Note: Note that the determinant $\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc$ is a special case of Laplace’s formula. The sign of the determinant changes if any two rows (or columns) are switched. If any two rows (or columns) in a determinant are identical or proportional then, the value of the determinant is zero.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
