
\[{\rm{135}}\,\,{\rm{mL}}\]of \[{\rm{0}}{\rm{.224}}\,\,{\rm{M}}\]\[{\rm{MgS}}{{\rm{O}}_4}\]solution was heated until the solution becomes \[{\rm{105}}\,\,{\rm{mL}}\]due to evaporation of water. Calculate the molarity of the concentrated solution.
Answer
163.5k+ views
Hint: Molarity (M) may be defined as the number of moles of solute dissolved per litre of the solution.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
Formula used \[{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}{\rm{(after}}\,\,{\rm{dilution)}}\]
where, \[{{\rm{M}}_{\rm{1}}}\]and \[{{\rm{M}}_{\rm{2}}}\]are the molarities (concentrations) of the solution before and after dilution respectively.
\[{{\rm{V}}_{\rm{1}}}\]and \[{{\rm{V}}_{\rm{2}}}\]are the volumes of the solution before and after dilution respectively.
Complete Step by Step Solution:
It is important to remember that when a solution is diluted with a solvent, the number of moles of solute in solution remain unchanged.
So, number of moles of solute = molarity \[ \times \]volume of solution in litres
Thus, for two different concentrations:
\[{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}{\rm{(after}}\,\,{\rm{dilution)}}\]
It is called the molarity equation. In case of balanced equation if \[{{\rm{n}}_1}\]moles of one reactant combines with \[{{\rm{n}}_2}\]moles of the second reactant, then
\[\dfrac{{{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{n}}_1}}} = \dfrac{{{{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}}}{{{{\rm{n}}_2}}}\]
As per given data,
Molarity of \[{\rm{MgS}}{{\rm{O}}_4}\]solution, \[{{\rm{M}}_{\rm{1}}}\]\[{\rm{ = }}\,\,{\rm{0}}{\rm{.224}}\,\,{\rm{M}}\]
Volume of \[{\rm{MgS}}{{\rm{O}}_4}\]solution, \[{{\rm{V}}_{\rm{1}}}\]\[{\rm{ = }}\,\,{\rm{135}}\,\,{\rm{mL}}\]
Molarity of concentrated solution, \[{{\rm{M}}_{\rm{2}}}\]\[ = \,\,?\]
Volume of concentrated solution, \[{{\rm{V}}_2}\] \[{\rm{ = }}\,\,{\rm{105}}\,\,{\rm{mL}}\]
Use the molarity equation to solve for the value of \[{{\rm{M}}_{\rm{2}}}\]as shown below:
\[\begin{array}{l}{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}{\rm{(after}}\,\,{\rm{dilution)}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{V}}_2}}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{{\rm{0}}{\rm{.224}}\,\,{\rm{M}}\,\, \times \,\,{\rm{135}}\,\,{\rm{mL}}}}{{{\rm{105}}\,\,{\rm{mL}}}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{30.24}}{{105}}{\rm{M}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \,\,0.288\,\,{\rm{M}}\end{array}\]
Hence, molarity of the concentrated solution is found to be \[0.288\,\,{\rm{M}}\]
Therefore, the answer is \[0.288\,\,{\rm{M}}\]
Note: Most of the reactions carried out in the laboratory take place quantitatively in solutions. Thus, it is important to know the amount of the reacting substances present in solution. Knowing the concentration of the solution in terms of normality, molarity etc., the amount of substance in a given volume can be calculated. The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature.
Mathematically, \[{\rm{molarity}}\,{\rm{(M)}}\,{\rm{ = }}\dfrac{{{\rm{number}}\,\,{\rm{of}}\,\,{\rm{moles}}\,\,{\rm{of}}\,\,{\rm{solute}}}}{{{\rm{volume}}\,\,{\rm{of}}\,\,{\rm{solution}}\,\,{\rm{in}}\,\,{\rm{litres}}}}\]
The units of molarity are moles per litre \[{\rm{(mol}}{{\rm{L}}^{{\rm{ - 1}}}}{\rm{)}}\]or moles per cubic decimetre \[{\rm{(mold}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}\]. The symbol used to designate molar concentration is \[{\rm{M}}\].
Formula used \[{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_{\rm{2}}}{\rm{(after}}\,\,{\rm{dilution)}}\]
where, \[{{\rm{M}}_{\rm{1}}}\]and \[{{\rm{M}}_{\rm{2}}}\]are the molarities (concentrations) of the solution before and after dilution respectively.
\[{{\rm{V}}_{\rm{1}}}\]and \[{{\rm{V}}_{\rm{2}}}\]are the volumes of the solution before and after dilution respectively.
Complete Step by Step Solution:
It is important to remember that when a solution is diluted with a solvent, the number of moles of solute in solution remain unchanged.
So, number of moles of solute = molarity \[ \times \]volume of solution in litres
Thus, for two different concentrations:
\[{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}{\rm{(after}}\,\,{\rm{dilution)}}\]
It is called the molarity equation. In case of balanced equation if \[{{\rm{n}}_1}\]moles of one reactant combines with \[{{\rm{n}}_2}\]moles of the second reactant, then
\[\dfrac{{{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{n}}_1}}} = \dfrac{{{{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}}}{{{{\rm{n}}_2}}}\]
As per given data,
Molarity of \[{\rm{MgS}}{{\rm{O}}_4}\]solution, \[{{\rm{M}}_{\rm{1}}}\]\[{\rm{ = }}\,\,{\rm{0}}{\rm{.224}}\,\,{\rm{M}}\]
Volume of \[{\rm{MgS}}{{\rm{O}}_4}\]solution, \[{{\rm{V}}_{\rm{1}}}\]\[{\rm{ = }}\,\,{\rm{135}}\,\,{\rm{mL}}\]
Molarity of concentrated solution, \[{{\rm{M}}_{\rm{2}}}\]\[ = \,\,?\]
Volume of concentrated solution, \[{{\rm{V}}_2}\] \[{\rm{ = }}\,\,{\rm{105}}\,\,{\rm{mL}}\]
Use the molarity equation to solve for the value of \[{{\rm{M}}_{\rm{2}}}\]as shown below:
\[\begin{array}{l}{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}{\rm{(before}}\,\,{\rm{dilution)}} = {{\rm{M}}_{\rm{2}}}{{\rm{V}}_2}{\rm{(after}}\,\,{\rm{dilution)}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{{{\rm{M}}_{\rm{1}}}{{\rm{V}}_{\rm{1}}}}}{{{{\rm{V}}_2}}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{{\rm{0}}{\rm{.224}}\,\,{\rm{M}}\,\, \times \,\,{\rm{135}}\,\,{\rm{mL}}}}{{{\rm{105}}\,\,{\rm{mL}}}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \dfrac{{30.24}}{{105}}{\rm{M}}\\ \Rightarrow {{\rm{M}}_{\rm{2}}} = \,\,0.288\,\,{\rm{M}}\end{array}\]
Hence, molarity of the concentrated solution is found to be \[0.288\,\,{\rm{M}}\]
Therefore, the answer is \[0.288\,\,{\rm{M}}\]
Note: Most of the reactions carried out in the laboratory take place quantitatively in solutions. Thus, it is important to know the amount of the reacting substances present in solution. Knowing the concentration of the solution in terms of normality, molarity etc., the amount of substance in a given volume can be calculated. The only disadvantage of this concentration unit i.e., molarity is that its value changes with the change in temperature.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
