
${\text{RCOOR'}}$ can be prepared by:
(a) Esterification of RCOOH
(b) Esterification of $(RCO)_2O$
(c) Baeyer - Villiger oxidation of ${\text{RCOR'}}$ with peroxy acid
(d) Reaction of RCOCl with ${\text{R'OH}}$
Answer
221.1k+ views
Hint: In order to answer the question, we have to have knowledge about the structure of carboxylic acid. Esterification process can be explained in an easier manner then.
Complete step-by-step answer:
On esterification of carboxylic acid (RCOOH), or an acid anhydride (RCOOCOR) with an alcohol (${\text{R'OH}}$), an ester (${\text{RCOOR'}}$) is formed. This reaction can be backed by the following chemical equation.
$\left. \text{RCOOH + {R}'OH }\overset{{}}\leftrightarrows{\text{ RCOO{R}' + }}{{\text{H}}_{\text{2}}}\text{O} \right\}\text{Esterification of Carboxylic Acid with Alcohol}$
\[\left. \text{RCOOCOR + {R}'OH }\overset{{}}\leftrightarrows{\text{ RCOO{R}' + RCOOH}} \right\}\text{Esterification of Acid Anhydrides with Alcohol}\]
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COOH + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}\leftrightarrows{\text{ C}}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + }{{\text{H}}_{2}}\text{O} \\
& \text{ Acid Chloride Alcohol Ester Water} \\
\end{align}\]
\[\begin{align}
& \text{ }{{\left( \text{C}{{\text{H}}_{\text{3}}}\text{CO} \right)}_{\text{2}}}\text{O + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + C}{{\text{H}}_{\text{3}}}\text{COOH} \\
& \text{Acid Anhydrade Alcohol Ester Carboxylic Acid} \\
\end{align}\]
An ester (${\text{RCOOR'}}$) is obtained when a ketone (${\text{RCOR'}}$) is treated with peroxy acid (${\text{R''COOOR}}$), also known as the Baeyer Villiger oxidation. This reaction can be backed by the following chemical equation.
$\left. \text{RCO{R}' + {R}''COOOH }\overset{-\text{{R}''COOH}}{\leftrightarrows}\text{ RCOO{R}' } \right\}\text{Baeyer Villiger Oxydation}$
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{C}}_{2}}{{\text{H}}_{5}}\text{ + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{COOOH }\overset{-{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{COOH}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \\
& \text{ Ketone Peroxy Acid Ester} \\
\end{align}\]
Also an ester (${\text{RCOOR'}}$) is formed when an acid chloride (RCOCl) reacts with an alcohol (${\text{R'OH}}$). This reaction can be backed by the following chemical equation.
$\left. \text{RCOCl + {R}'OH }\overset{{}}{\leftrightarrows}\text{ RCOO{R}' + HCl} \right\}\text{Reaction of Acid Chloride with Alcohol}$
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COCl + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + HCl} \\
& \text{ Acid Chloride Alcohol Ester Hydrochloric Acid} \\
\end{align}\]
So we can conclude that ${\text{RCOOR'}}$can be prepared by:
Esterification of RCOOH
Baeyer - Villiger oxidation of ${\text{RCOR'}}$ with peroxy acid
Reaction of RCOCl with ${\text{R'OH}}$
Therefore, the correct options are Option A, Option B, Option C and Option D.
Note: We should be familiar with the concept of esterification. So here is the definition. Esterification is a general name for a chemical reaction in which two reactants, which are typically alcohols and an acid, form an ester as a reaction product. Esters are common in organic chemistry and biological materials and often have a pleasant characteristic fruity odor.
Let us now know the definition of Baeyer - Villiger oxidation. Baeyer - Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from acyclic ketones using peroxyacids or peroxides as the oxidant.
Complete step-by-step answer:
On esterification of carboxylic acid (RCOOH), or an acid anhydride (RCOOCOR) with an alcohol (${\text{R'OH}}$), an ester (${\text{RCOOR'}}$) is formed. This reaction can be backed by the following chemical equation.
$\left. \text{RCOOH + {R}'OH }\overset{{}}\leftrightarrows{\text{ RCOO{R}' + }}{{\text{H}}_{\text{2}}}\text{O} \right\}\text{Esterification of Carboxylic Acid with Alcohol}$
\[\left. \text{RCOOCOR + {R}'OH }\overset{{}}\leftrightarrows{\text{ RCOO{R}' + RCOOH}} \right\}\text{Esterification of Acid Anhydrides with Alcohol}\]
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COOH + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}\leftrightarrows{\text{ C}}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + }{{\text{H}}_{2}}\text{O} \\
& \text{ Acid Chloride Alcohol Ester Water} \\
\end{align}\]
\[\begin{align}
& \text{ }{{\left( \text{C}{{\text{H}}_{\text{3}}}\text{CO} \right)}_{\text{2}}}\text{O + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + C}{{\text{H}}_{\text{3}}}\text{COOH} \\
& \text{Acid Anhydrade Alcohol Ester Carboxylic Acid} \\
\end{align}\]
An ester (${\text{RCOOR'}}$) is obtained when a ketone (${\text{RCOR'}}$) is treated with peroxy acid (${\text{R''COOOR}}$), also known as the Baeyer Villiger oxidation. This reaction can be backed by the following chemical equation.
$\left. \text{RCO{R}' + {R}''COOOH }\overset{-\text{{R}''COOH}}{\leftrightarrows}\text{ RCOO{R}' } \right\}\text{Baeyer Villiger Oxydation}$
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{C}{{\text{H}}_{\text{3}}}\text{CO}{{\text{C}}_{2}}{{\text{H}}_{5}}\text{ + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{COOOH }\overset{-{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{COOH}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \\
& \text{ Ketone Peroxy Acid Ester} \\
\end{align}\]
Also an ester (${\text{RCOOR'}}$) is formed when an acid chloride (RCOCl) reacts with an alcohol (${\text{R'OH}}$). This reaction can be backed by the following chemical equation.
$\left. \text{RCOCl + {R}'OH }\overset{{}}{\leftrightarrows}\text{ RCOO{R}' + HCl} \right\}\text{Reaction of Acid Chloride with Alcohol}$
An example of the same is shown by the following chemical equation.
\[\begin{align}
& \text{ C}{{\text{H}}_{\text{3}}}\text{COCl + }{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{OH }\overset{{}}{\leftrightarrows}\text{ C}{{\text{H}}_{\text{3}}}\text{COO}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\text{ + HCl} \\
& \text{ Acid Chloride Alcohol Ester Hydrochloric Acid} \\
\end{align}\]
So we can conclude that ${\text{RCOOR'}}$can be prepared by:
Esterification of RCOOH
Baeyer - Villiger oxidation of ${\text{RCOR'}}$ with peroxy acid
Reaction of RCOCl with ${\text{R'OH}}$
Therefore, the correct options are Option A, Option B, Option C and Option D.
Note: We should be familiar with the concept of esterification. So here is the definition. Esterification is a general name for a chemical reaction in which two reactants, which are typically alcohols and an acid, form an ester as a reaction product. Esters are common in organic chemistry and biological materials and often have a pleasant characteristic fruity odor.
Let us now know the definition of Baeyer - Villiger oxidation. Baeyer - Villiger oxidation is an organic reaction that forms an ester from a ketone or a lactone from acyclic ketones using peroxyacids or peroxides as the oxidant.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Free Radical Substitution and Its Stepwise Mechanism

Understanding Geostationary and Geosynchronous Satellites

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 9 Amines

Test for Phenolic Group

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

Convert chloro benzene to phenol class 12 chemistry JEE_Main

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

