
Prove that \[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}} = \tan {62^0}\] .
Answer
164.1k+ views
Hint: Divide in numerator and denominator by \[\cos {17^0}\] ,we will get the expression in terms of \[\tan {17^0}\] .Since we have to prove the final answer in terms of tan only so we will manipulate the expression using the identity \[\tan ({45^0} + \theta ) = \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }}\] to get the required answer.
Formula Used
1. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
2.\[\]\[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Complete step by step solution
Given – LHS=\[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}}\]
Dividing by \[\cos {17^0}\] in numerator and denominator
LHS=\[\dfrac{{\dfrac{{\cos {{17}^0}}}{{\cos {{17}^0}}} + \dfrac{{\sin {{17}^0}}}{{\cos {{17}^0}}}}}{{\dfrac{{\cos 17}}{{\cos {{17}^0}}} - \dfrac{{\sin {{17}^0}}}{{\cos {{17}^0}}}}}\]
We know that \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] ,using these formulae in above expression
LHS= \[\dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]
We know that \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Put \[A = {45^0}\] and \[B = {17^0}\] in the above formula
\[\tan ({45^0} + {17^0}) = \dfrac{{\tan {{45}^0} + \tan {{17}^0}}}{{1 - \tan {{45}^0}\tan {{17}^0}}}\]
But \[\tan {45^0} = 1\]
∴ \[\tan ({45^0} + {17^0}) = \dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]
But \[\dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]=LHS
\[ \Rightarrow \tan ({45^0} + {17^0})\] =LHS
\[ \Rightarrow \]LHS=\[\tan {62^0}\]
But \[\tan {62^0} = \] RHS
Thus LHS=RHS
Hence proved that \[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}} = \tan {62^0}\].
Note: This question can be solved by another method as
LHS=\[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}}\]
Multiplying by \[\cos {17^0} + \sin {17^0}\] in numerator and denominator
LHS=\[\dfrac{{{{\left( {\cos {{17}^0} + \sin {{17}^0}} \right)}^2}}}{{{{\cos }^2}{{17}^0} - {{\sin }^2}{{17}^2}}}\]
LHS=\[\dfrac{{{{\cos }^2}{{17}^0} + {{\sin }^2}{{17}^0} + 2\sin {{17}^0}\cos {{17}^0}}}{{\cos {{34}^0}}}\]
\[\left( \begin{array}{l}{\cos ^2}A + {\sin ^2}A = 1\\{\cos ^2}A - {\sin ^2}A = \cos 2A\end{array} \right)\]
LHS=\[\dfrac{{1 + \sin {{34}^0}}}{{\cos {{34}^0}}}\]
But \[\sin {34^0} = \cos {56^0}\] so ,
LHS= \[\dfrac{{1 + \cos {{56}^0}}}{{\cos {{34}^0}}}\]
But \[1 + \cos 2A = {\cos ^2}A\]
∴ LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{\cos {{34}^0}}}\]
As \[\cos {34^0} = \sin {56^0}\]
LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{\sin {{56}^0}}}\]
Using \[\sin 2A = 2\sin A\cos A\]
LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{2\sin {{28}^0}\cos {{28}^0}}}\]
Simplifying the expression
LHS= \[\dfrac{{\cos {{28}^0}}}{{\sin {{28}^0}}}\]
LHS= \[\cot {28^0}\]
But \[\cot \theta = \tan (90 - \theta )\]
Therefore
LHS= \[\tan {62^0}\]
Hence proved LHS=RHS.
Formula Used
1. \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
2.\[\]\[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Complete step by step solution
Given – LHS=\[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}}\]
Dividing by \[\cos {17^0}\] in numerator and denominator
LHS=\[\dfrac{{\dfrac{{\cos {{17}^0}}}{{\cos {{17}^0}}} + \dfrac{{\sin {{17}^0}}}{{\cos {{17}^0}}}}}{{\dfrac{{\cos 17}}{{\cos {{17}^0}}} - \dfrac{{\sin {{17}^0}}}{{\cos {{17}^0}}}}}\]
We know that \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] ,using these formulae in above expression
LHS= \[\dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]
We know that \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Put \[A = {45^0}\] and \[B = {17^0}\] in the above formula
\[\tan ({45^0} + {17^0}) = \dfrac{{\tan {{45}^0} + \tan {{17}^0}}}{{1 - \tan {{45}^0}\tan {{17}^0}}}\]
But \[\tan {45^0} = 1\]
∴ \[\tan ({45^0} + {17^0}) = \dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]
But \[\dfrac{{1 + \tan {{17}^0}}}{{1 - \tan {{17}^0}}}\]=LHS
\[ \Rightarrow \tan ({45^0} + {17^0})\] =LHS
\[ \Rightarrow \]LHS=\[\tan {62^0}\]
But \[\tan {62^0} = \] RHS
Thus LHS=RHS
Hence proved that \[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}} = \tan {62^0}\].
Note: This question can be solved by another method as
LHS=\[\dfrac{{\cos {{17}^0} + \sin {{17}^0}}}{{\cos {{17}^0} - \sin {{17}^0}}}\]
Multiplying by \[\cos {17^0} + \sin {17^0}\] in numerator and denominator
LHS=\[\dfrac{{{{\left( {\cos {{17}^0} + \sin {{17}^0}} \right)}^2}}}{{{{\cos }^2}{{17}^0} - {{\sin }^2}{{17}^2}}}\]
LHS=\[\dfrac{{{{\cos }^2}{{17}^0} + {{\sin }^2}{{17}^0} + 2\sin {{17}^0}\cos {{17}^0}}}{{\cos {{34}^0}}}\]
\[\left( \begin{array}{l}{\cos ^2}A + {\sin ^2}A = 1\\{\cos ^2}A - {\sin ^2}A = \cos 2A\end{array} \right)\]
LHS=\[\dfrac{{1 + \sin {{34}^0}}}{{\cos {{34}^0}}}\]
But \[\sin {34^0} = \cos {56^0}\] so ,
LHS= \[\dfrac{{1 + \cos {{56}^0}}}{{\cos {{34}^0}}}\]
But \[1 + \cos 2A = {\cos ^2}A\]
∴ LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{\cos {{34}^0}}}\]
As \[\cos {34^0} = \sin {56^0}\]
LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{\sin {{56}^0}}}\]
Using \[\sin 2A = 2\sin A\cos A\]
LHS= \[\dfrac{{2{{\cos }^2}{{28}^0}}}{{2\sin {{28}^0}\cos {{28}^0}}}\]
Simplifying the expression
LHS= \[\dfrac{{\cos {{28}^0}}}{{\sin {{28}^0}}}\]
LHS= \[\cot {28^0}\]
But \[\cot \theta = \tan (90 - \theta )\]
Therefore
LHS= \[\tan {62^0}\]
Hence proved LHS=RHS.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
