
Photon energy \[6eV\] is incident on a metal surface of work function \[4\,eV\]. Maximum KE of emitted photo-electrons will be:
A. \[0\,eV\]
B. \[1\,eV\]
C. \[2\,eV\]
D. \[10\,eV\]
Answer
221.1k+ views
Hint: Here the concept of photoelectric effect will be applied to solve the problem. According to this the total energy of a photon is equal to the sum of the energy utilized to eject an electron and the maximum kinetic energy of electrons. By using this we can obtain the maximum KE of emitted photo-electrons as the maximum kinetic energy of electrons is equal to the energy of the incident light energy packet minus the work function.
Formula used:
Kinetic energy (\[K{E_{\max }}\]) is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy of the incident radiation and \[\phi \] is the work function.
Complete step by step solution:
Given Energy of photon, \[E = 6\,eV\]
Work function, \[\phi = 4\,eV\]
As we know that,
\[K{E_{\max }} = E - \phi \]
By substituting the values, we get
\[K{E_{\max }}= 6\,eV - 4\,eV\]
\[\therefore K{E_{\max }}= 2\,eV\]
Therefore, the maximum KE of emitted photo-electrons will be \[2\,eV\].
Hence option C is the correct answer.
Additional information: Photon energy is the energy carried by a single photon. The energy is directly related to the photon's electromagnetic frequency and is inversely related to the wavelength. The higher the photon's frequency the energy will be higher. The energy needed by the particle to come from the medium and break to the surface. Photoelectric is the phenomenon where electrons are ejected from a metal surface when the light of sufficient frequency is incident on it. Einstein suggested that light behaved like a particle and that each particle of light has energy called a photon.
Note: Students routinely make mistakes while writing Einstein's photoelectric effect equation. Remember that the energy of incoming radiation is computed as the sum of the photoelectron's kinetic energy and the metal's work function.
Formula used:
Kinetic energy (\[K{E_{\max }}\]) is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy of the incident radiation and \[\phi \] is the work function.
Complete step by step solution:
Given Energy of photon, \[E = 6\,eV\]
Work function, \[\phi = 4\,eV\]
As we know that,
\[K{E_{\max }} = E - \phi \]
By substituting the values, we get
\[K{E_{\max }}= 6\,eV - 4\,eV\]
\[\therefore K{E_{\max }}= 2\,eV\]
Therefore, the maximum KE of emitted photo-electrons will be \[2\,eV\].
Hence option C is the correct answer.
Additional information: Photon energy is the energy carried by a single photon. The energy is directly related to the photon's electromagnetic frequency and is inversely related to the wavelength. The higher the photon's frequency the energy will be higher. The energy needed by the particle to come from the medium and break to the surface. Photoelectric is the phenomenon where electrons are ejected from a metal surface when the light of sufficient frequency is incident on it. Einstein suggested that light behaved like a particle and that each particle of light has energy called a photon.
Note: Students routinely make mistakes while writing Einstein's photoelectric effect equation. Remember that the energy of incoming radiation is computed as the sum of the photoelectron's kinetic energy and the metal's work function.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

