
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\] is equal to
A. \[\left| \overrightarrow{a}\times \overrightarrow{b} \right|\]
B. \[{{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}}\]
C. $0$
D. None of these
Answer
163.5k+ views
Hint: In the above question, we are asked to calculate the value of the matrix \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\], whose value can be easily calculated using the concept of the magnitude of a vector and the concept of the scalar triple product.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
