
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\] is equal to
A. \[\left| \overrightarrow{a}\times \overrightarrow{b} \right|\]
B. \[{{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}}\]
C. $0$
D. None of these
Answer
217.8k+ views
Hint: In the above question, we are asked to calculate the value of the matrix \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\], whose value can be easily calculated using the concept of the magnitude of a vector and the concept of the scalar triple product.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

