
One of the lines in the emission spectrum of $L{i^{2 + }}$ has the same wavelength as that of the ${2^{nd}}$ line of the Balmer series in the hydrogen spectrum. The electronic transition corresponding to this line is $n = 12 \to n = x$. Find the value of $x$.
A. $8$
B. $6$
C. $7$
D. $5$
Answer
218.4k+ views
Hint: We already know that an element's absorption spectrum, which contains dark lines in the same locations as its emission spectrum's bright lines, is defined by the number of spectral lines. To get the wavelength of the Balmer series in this problem, we shall use Rydberg's formula. In the Balmer series, the electron transition on the second line, which occurs at the least energy transition, yields the greatest wavelength.
Formula used:
The Rydberg’s Formula is as follows:
$\dfrac{1}{\lambda } = R \times {Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right){m^{ - 1}}$
Here, $\lambda $ is the wavelength, $R$ is the Rydberg constant and $n_1,n_2$ are the energy states.
Complete step by step solution:
In the question, it is given that the electronic transition corresponding to this line is $n = 12 \to n = x$ and the emission spectrum $L{i^{2 + }}$ has a line with the same wavelength as the Balmer series ${2^{nd}}$ line for hydrogen. Use Rydberg’s Formula to determine the value of $x$,
$\dfrac{1}{\lambda } = R \times {Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right){m^{ - 1}}$
As an atomic number of hydrogen is $1$ and as the ground state of the Balmer series is $2$, then we have for ${2^{nd}}$ line of the Balmer series in the hydrogen atom:
$Z = 1 \\$
$\Rightarrow {n_1} = 2 \\$
Now, the transition of the electron must occur in a way that releases the least amount of energy in order for the maximal wavelength to be emitted. Additionally, the transfer of electrons between the two closest energy states should occur for the least energy. In order to know that, the ground state for the Balmer series is ${n_1} = 2$, the just-next-energy state, which is ${n_2} = 4$, would be the nearest energy state for least energy,
Now, substituting the given values in the above formula, then we obtain:
$\dfrac{1}{\lambda } = R(1)\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right) \\$ $\Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{1}{4} - \dfrac{1}{{16}}} \right) \\$ $\Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{3}{{16}}} \right) \\$
Similarly, as an atomic number of lithium is $3$and as the ground state of the Balmer series is $x$, then we have for $x$line of the Balmer series in the lithium atom:
$Z = 3 \\$
${n_1} = x \\$
In order to know that, the ground state for the Balmer series is ${n_1} = 3$, the just-next-energy state, which is ${n_2} = 12$, would be the nearest energy state for least energy. Substituting the given values in the above formula, then we obtain:
$\dfrac{1}{\lambda } = R{(3)^2}\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{{12}^2}}}} \right) \\$
$\Rightarrow \dfrac{1}{\lambda } = 9R\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{144}}} \right) \\$
From the given information, as we know that the emission spectrum of lithium and hydrogen has same wavelength, so:
$9R\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{144}}} \right) = R\left( {\dfrac{3}{{16}}} \right) \\$
$\Rightarrow 3\left( {\dfrac{{144 - {x^2}}}{{144{x^2}}}} \right) = \left( {\dfrac{1}{{16}}} \right) \\$
$\Rightarrow 6912 - 48{x^2} = 144{x^2} \\$
$\therefore x = \sqrt {\dfrac{{6912}}{{192}}} = 6 $
Hence, the correct option is B.
Note: Due to the abundance of hydrogen in the universe, the Balmer lines arise in many celestial objects and are therefore frequently observed and quite strong in comparison to lines from other elements. This makes the Balmer series very helpful in the field of astronomy.
Formula used:
The Rydberg’s Formula is as follows:
$\dfrac{1}{\lambda } = R \times {Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right){m^{ - 1}}$
Here, $\lambda $ is the wavelength, $R$ is the Rydberg constant and $n_1,n_2$ are the energy states.
Complete step by step solution:
In the question, it is given that the electronic transition corresponding to this line is $n = 12 \to n = x$ and the emission spectrum $L{i^{2 + }}$ has a line with the same wavelength as the Balmer series ${2^{nd}}$ line for hydrogen. Use Rydberg’s Formula to determine the value of $x$,
$\dfrac{1}{\lambda } = R \times {Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right){m^{ - 1}}$
As an atomic number of hydrogen is $1$ and as the ground state of the Balmer series is $2$, then we have for ${2^{nd}}$ line of the Balmer series in the hydrogen atom:
$Z = 1 \\$
$\Rightarrow {n_1} = 2 \\$
Now, the transition of the electron must occur in a way that releases the least amount of energy in order for the maximal wavelength to be emitted. Additionally, the transfer of electrons between the two closest energy states should occur for the least energy. In order to know that, the ground state for the Balmer series is ${n_1} = 2$, the just-next-energy state, which is ${n_2} = 4$, would be the nearest energy state for least energy,
Now, substituting the given values in the above formula, then we obtain:
$\dfrac{1}{\lambda } = R(1)\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{4^2}}}} \right) \\$ $\Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{1}{4} - \dfrac{1}{{16}}} \right) \\$ $\Rightarrow \dfrac{1}{\lambda } = R\left( {\dfrac{3}{{16}}} \right) \\$
Similarly, as an atomic number of lithium is $3$and as the ground state of the Balmer series is $x$, then we have for $x$line of the Balmer series in the lithium atom:
$Z = 3 \\$
${n_1} = x \\$
In order to know that, the ground state for the Balmer series is ${n_1} = 3$, the just-next-energy state, which is ${n_2} = 12$, would be the nearest energy state for least energy. Substituting the given values in the above formula, then we obtain:
$\dfrac{1}{\lambda } = R{(3)^2}\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{{{12}^2}}}} \right) \\$
$\Rightarrow \dfrac{1}{\lambda } = 9R\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{144}}} \right) \\$
From the given information, as we know that the emission spectrum of lithium and hydrogen has same wavelength, so:
$9R\left( {\dfrac{1}{{{x^2}}} - \dfrac{1}{{144}}} \right) = R\left( {\dfrac{3}{{16}}} \right) \\$
$\Rightarrow 3\left( {\dfrac{{144 - {x^2}}}{{144{x^2}}}} \right) = \left( {\dfrac{1}{{16}}} \right) \\$
$\Rightarrow 6912 - 48{x^2} = 144{x^2} \\$
$\therefore x = \sqrt {\dfrac{{6912}}{{192}}} = 6 $
Hence, the correct option is B.
Note: Due to the abundance of hydrogen in the universe, the Balmer lines arise in many celestial objects and are therefore frequently observed and quite strong in comparison to lines from other elements. This makes the Balmer series very helpful in the field of astronomy.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

