
What is the number of real roots of the equation \[{e^{4x}} + {e^{3x}} - 4{e^{2x}} + {e^x} + 1 = 0\]?
A. \[3\]
B. \[4\]
C. \[1\]
D. \[2\]
Answer
163.5k+ views
Hint: Divide both sides of the given equation by \[{e^{2x}}\]. You’ll get a quadratic equation in \[\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)\]. Make the substitution \[{e^x} + \dfrac{1}{{{e^x}}} = y\] and find the value of \[y\]. You’ll get two values of \[y\]. Omit the negative value because \[{e^x} > 0\] for all values of \[x\]. Replace \[y\] by \[\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)\]. You’ll get a quadratic equation in \[{e^x}\]. Find the roots by solving the equation. After that the value of \[x\] will be obtained.
Formula Userd:
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step solution:
The given equation is \[{e^{4x}} + {e^{3x}} - 4{e^{2x}} + {e^x} + 1 = 0\]
Dividing each term by \[{e^{2x}}\] on both sides and using the formula \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\], we get
\[{e^{2x}} + {e^x} - 4 + \dfrac{1}{{{e^x}}} + \dfrac{1}{{{e^{2x}}}} = 0\]
Arrange the terms.
\[ \Rightarrow \left( {{e^{2x}} + \dfrac{1}{{{e^{2x}}}}} \right) + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \left\{ {{{\left( {{e^x}} \right)}^2} + {{\left( {\dfrac{1}{{{e^x}}}} \right)}^2}} \right\} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
Use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow \left\{ {{{\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)}^2} - 2 \times {e^x} \times \dfrac{1}{{{e^x}}}} \right\} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
\[ \Rightarrow {\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)^2} - 2 + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
\[ \Rightarrow {\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)^2} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 6 = 0\]
Substitute \[{e^x} + \dfrac{1}{{{e^x}}} = y\]
Then the equation reduces to \[{y^2} + y - 6 = 0\]
Solve this equation by factorizing the expression of the left-hand side.
\[ \Rightarrow {y^2} + 3y - 2y - 6 = 0\]
\[ \Rightarrow y\left( {y + 3} \right) - 2\left( {y + 3} \right) = 0\]
\[ \Rightarrow \left( {y + 3} \right)\left( {y - 2} \right) = 0\]
Product of two factors is equal to zero if and only if any of the two factors is equal to zero.
So, either \[y + 3 = 0\] or \[y - 2 = 0\]
\[y + 3 = 0 \Rightarrow y = - 3\]
\[y - 2 = 0 \Rightarrow y = 2\]
But \[y = - 3\] is not possible because \[{e^x} > 0\] for all values of \[x\]
So, \[y = 2\]
We assumed \[{e^x} + \dfrac{1}{{{e^x}}} = y\]
So, \[{e^x} + \dfrac{1}{{{e^x}}} = 2\]
Multiply each term by \[{e^x}\] on both sides of the equation.
\[ \Rightarrow {\left( {{e^x}} \right)^2} + 1 = 2{e^x}\]
Let us substitute \[{e^x} = z\]
Then the equation reduces to \[{z^2} + 1 = 2z\]
This is a quadratic equation in \[z\].
Solve this equation to find the value of \[z\]
Arrange the equation.
\[{z^2} - 2z + 1 = 0\]
Use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {\left( {z - 1} \right)^2} = 0\]
\[ \Rightarrow z - 1 = 0\]
\[ \Rightarrow z = 1\]
We assumed that \[{e^x} = z\]
So, \[{e^x} = 1\]
Any non-zero number raise to the power zero is equal to \[1\].
So, we can write \[{e^0} = 1\]
\[\therefore {e^x} = {e^0}\]
\[ \Rightarrow x = 0\]
So, only one value of \[x\] is obtained.
Thus, number of real roots of the given equation is \[1\].
Hence option C is correct.
Note: Remember that the value of any exponential function is positive always. Many times a critical equation can be solved by making a proper substitution. So, be careful while making a substitution.
Formula Userd:
\[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step-by-step solution:
The given equation is \[{e^{4x}} + {e^{3x}} - 4{e^{2x}} + {e^x} + 1 = 0\]
Dividing each term by \[{e^{2x}}\] on both sides and using the formula \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\], we get
\[{e^{2x}} + {e^x} - 4 + \dfrac{1}{{{e^x}}} + \dfrac{1}{{{e^{2x}}}} = 0\]
Arrange the terms.
\[ \Rightarrow \left( {{e^{2x}} + \dfrac{1}{{{e^{2x}}}}} \right) + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
Use the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow \left\{ {{{\left( {{e^x}} \right)}^2} + {{\left( {\dfrac{1}{{{e^x}}}} \right)}^2}} \right\} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
Use the identity \[{a^2} + {b^2} = {\left( {a + b} \right)^2} - 2ab\]
\[ \Rightarrow \left\{ {{{\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)}^2} - 2 \times {e^x} \times \dfrac{1}{{{e^x}}}} \right\} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
\[ \Rightarrow {\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)^2} - 2 + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 4 = 0\]
\[ \Rightarrow {\left( {{e^x} + \dfrac{1}{{{e^x}}}} \right)^2} + \left( {{e^x} + \dfrac{1}{{{e^x}}}} \right) - 6 = 0\]
Substitute \[{e^x} + \dfrac{1}{{{e^x}}} = y\]
Then the equation reduces to \[{y^2} + y - 6 = 0\]
Solve this equation by factorizing the expression of the left-hand side.
\[ \Rightarrow {y^2} + 3y - 2y - 6 = 0\]
\[ \Rightarrow y\left( {y + 3} \right) - 2\left( {y + 3} \right) = 0\]
\[ \Rightarrow \left( {y + 3} \right)\left( {y - 2} \right) = 0\]
Product of two factors is equal to zero if and only if any of the two factors is equal to zero.
So, either \[y + 3 = 0\] or \[y - 2 = 0\]
\[y + 3 = 0 \Rightarrow y = - 3\]
\[y - 2 = 0 \Rightarrow y = 2\]
But \[y = - 3\] is not possible because \[{e^x} > 0\] for all values of \[x\]
So, \[y = 2\]
We assumed \[{e^x} + \dfrac{1}{{{e^x}}} = y\]
So, \[{e^x} + \dfrac{1}{{{e^x}}} = 2\]
Multiply each term by \[{e^x}\] on both sides of the equation.
\[ \Rightarrow {\left( {{e^x}} \right)^2} + 1 = 2{e^x}\]
Let us substitute \[{e^x} = z\]
Then the equation reduces to \[{z^2} + 1 = 2z\]
This is a quadratic equation in \[z\].
Solve this equation to find the value of \[z\]
Arrange the equation.
\[{z^2} - 2z + 1 = 0\]
Use the identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {\left( {z - 1} \right)^2} = 0\]
\[ \Rightarrow z - 1 = 0\]
\[ \Rightarrow z = 1\]
We assumed that \[{e^x} = z\]
So, \[{e^x} = 1\]
Any non-zero number raise to the power zero is equal to \[1\].
So, we can write \[{e^0} = 1\]
\[\therefore {e^x} = {e^0}\]
\[ \Rightarrow x = 0\]
So, only one value of \[x\] is obtained.
Thus, number of real roots of the given equation is \[1\].
Hence option C is correct.
Note: Remember that the value of any exponential function is positive always. Many times a critical equation can be solved by making a proper substitution. So, be careful while making a substitution.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
