
Normality of 0.3 M phosphorus acid (${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$) is:
(A) 0.5
(B) 0.6
(C) 0.9
(D) 0.1
Answer
156.9k+ views
Hint: Normality is a term used for indicating the concentration of a solution. Here, you can use the formula ${{Normality = Molarity \times n-factor}}$ for finding the normality from the given data.
Complete step by step answer: Here, in the question, the molarity of the solution is given. So, we can use a simple formula for normality. For using the formula:${{Normality = Molarity \times n-factor}}$
We need to know what n-factor is. N-factor is the acidity of a base or the basicity of an acid.
The acid given is Phosphorus acid whose n-factor is 2. Phosphorus acid has a basicity of 2. This is because ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ can donate two ${\text{O}}{{\text{H}}^{\text{ - }}}$ ions or it contains 2 replaceable ${{\text{H}}^{\text{ + }}}$ions.
So, by substituting the above values in the formula, we get:
${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$
So, the normality of the given phosphorus acid is 0.6 N.
Additional Information:
Normality is mainly used as a measure of reactive species in a solution and during titration reactions or particularly in situations involving acid-base chemistry.
As per the standard definition of normality, it is described as the number of gram or mole equivalents of solute present in one litre of a solution. When we say equivalent, it is the number of moles of reactive units in a compound.
Note: When you are taking the values for n-factor, it is the basicity or the number of replaceable ${{\text{H}}^{\text{ + }}}$ ions in the acid. In case of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$, you may think that there is 3 replaceable ${{\text{H}}^{\text{ + }}}$. But when you see the structure of phosphorus acid, there are only 2 replaceable ${{\text{H}}^{\text{ + }}}$.
Complete step by step answer: Here, in the question, the molarity of the solution is given. So, we can use a simple formula for normality. For using the formula:${{Normality = Molarity \times n-factor}}$
We need to know what n-factor is. N-factor is the acidity of a base or the basicity of an acid.
The acid given is Phosphorus acid whose n-factor is 2. Phosphorus acid has a basicity of 2. This is because ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$ can donate two ${\text{O}}{{\text{H}}^{\text{ - }}}$ ions or it contains 2 replaceable ${{\text{H}}^{\text{ + }}}$ions.
So, by substituting the above values in the formula, we get:
${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$${{Normality = Molarity \times n - factor = 0}}{{.3 \times 2 = 0}}{\text{.6N}}$
So, the normality of the given phosphorus acid is 0.6 N.
Additional Information:
Normality is mainly used as a measure of reactive species in a solution and during titration reactions or particularly in situations involving acid-base chemistry.
As per the standard definition of normality, it is described as the number of gram or mole equivalents of solute present in one litre of a solution. When we say equivalent, it is the number of moles of reactive units in a compound.
Note: When you are taking the values for n-factor, it is the basicity or the number of replaceable ${{\text{H}}^{\text{ + }}}$ ions in the acid. In case of ${{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{3}}}$, you may think that there is 3 replaceable ${{\text{H}}^{\text{ + }}}$. But when you see the structure of phosphorus acid, there are only 2 replaceable ${{\text{H}}^{\text{ + }}}$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?
