
Name the units of some physical quantities are given in List-I, and their dimensional formulae are given in List-II. Match the right pair of the lists.
List-I List-II (a) Pa-s (e) $\left[ {{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$ (b) NmK-1 (f) $\left[ {{\rm{ML}}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]$ (c) Jkg-1k-1 (g) $\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 1}}} \right]$ (d) Wm-1k-1 (h) $\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$
A) a-h, b-g, c-e, d-f
B) a-g, b-f, c-e, d-h
C) a-g, b-e, c-h, d-f
D) a-g, b-h, c-e, d-f
| List-I | List-II |
| (a) Pa-s | (e) $\left[ {{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$ |
| (b) NmK-1 | (f) $\left[ {{\rm{ML}}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]$ |
| (c) Jkg-1k-1 | (g) $\left[ {{\rm{M}}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 1}}} \right]$ |
| (d) Wm-1k-1 | (h) $\left[ {{\rm{M}}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$ |
Answer
219.3k+ views
Hint: To solve this problem first we derived all dimensional formulas according to given units and found out which dimensional formula matches to the given units. Dimensional formulae defined as an expression for the unit of a physical quantity in terms of the fundamental quantities. The fundamental quantities are represented as mass (M), length (L), and time (T). A dimensional formula is expressed in terms of powers of $\left[ {{{\rm{M}}^a}{{\rm{L}}^b}{{\rm{T}}^c}} \right]$ which are called dimensions.
Complete step by step answer:
(a) Pa-s here Pa is the unit of pressure and second for time.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right]\;\left[ {{{\rm{T}}^1}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2 + 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 1}}} \right]$
(b) NmK-1 here N is the unit of force, m for length and K is the kelvin unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\,\left[ {{{\rm{L}}^1}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{1 + 1}}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$
(c) Jkg-1K-1 here J is the unit of energy, kg is the unit of mass, and K is the unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]\,\left[ {{{\rm{M}}^{ - 1}}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^0}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$
(d) Wm-1K-1 Here W is the unit of power, m is length, and K is the unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 3}}} \right]\;\left[ {{{\rm{L}}^{ - 1}}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\, = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{2 - 1}}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]\;\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]$
When we observe all these dimensional formulae, therefore the correct option is (D).
Additional information: The fundamental units of fundamental quantities form the basis from which various other quantities are derived. Mass, length, and time are most commonly used fundamental quantities so they must be specified in all dimensional formulas. All the dimensional formulae must be written in square brackets.
Note: There are some limitations of dimensional analysis are:
i) This method cannot be applicable to a trigonometric, exponential, and logarithmic function.
ii) If the physical quantities are dependent on more than three physical quantities than it is not easy to find the dimensional formula.
Complete step by step answer:
(a) Pa-s here Pa is the unit of pressure and second for time.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2}}} \right]\;\left[ {{{\rm{T}}^1}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 2 + 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{ - 1}}{{\rm{T}}^{ - 1}}} \right]$
(b) NmK-1 here N is the unit of force, m for length and K is the kelvin unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 2}}} \right]\,\left[ {{{\rm{L}}^1}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{1 + 1}}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$
(c) Jkg-1K-1 here J is the unit of energy, kg is the unit of mass, and K is the unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}} \right]\,\left[ {{{\rm{M}}^{ - 1}}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\; = \;\left[ {{{\rm{M}}^0}{{\rm{L}}^2}{{\rm{T}}^{ - 2}}{{\rm{K}}^{ - 1}}} \right]$
(d) Wm-1K-1 Here W is the unit of power, m is length, and K is the unit of temperature.
$ \Rightarrow \;\left[ {{{\rm{M}}^1}{{\rm{L}}^2}{{\rm{T}}^{ - 3}}} \right]\;\left[ {{{\rm{L}}^{ - 1}}} \right]\;\left[ {{{\rm{K}}^{ - 1}}} \right]\, = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^{2 - 1}}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]\;\; = \;\left[ {{{\rm{M}}^1}{{\rm{L}}^1}{{\rm{T}}^{ - 3}}{{\rm{K}}^{ - 1}}} \right]$
When we observe all these dimensional formulae, therefore the correct option is (D).
Additional information: The fundamental units of fundamental quantities form the basis from which various other quantities are derived. Mass, length, and time are most commonly used fundamental quantities so they must be specified in all dimensional formulas. All the dimensional formulae must be written in square brackets.
Note: There are some limitations of dimensional analysis are:
i) This method cannot be applicable to a trigonometric, exponential, and logarithmic function.
ii) If the physical quantities are dependent on more than three physical quantities than it is not easy to find the dimensional formula.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Other Pages
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

