
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$ is equal to
1. $e$
2. ${e^2}$
3. $2$
4. $1$
Answer
232.8k+ views
Hint: Solve the function by applying trigonometric $\tan $ function formula. Now, try to solve this further using the limit. If the answer will be infinity then use rules or formulas of limit to get the appropriate answer.
Formula Used:
Trigonometric formula –
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Limit formula –
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan \left( {\dfrac{\pi }{4}} \right)\tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x + \tan x - \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 - \tan x}}{{1 - \tan x}} + \dfrac{{\tan x + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {1 + \dfrac{{2\tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = {e^{\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{2\tan x}}{{1 - \tan x}}} \right)\left( {\dfrac{1}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2(1)(1)}}$
$ = {e^2}$
Therefore, the correct option is 2.
Note: In such questions, if after solving limit you will get the power as infinity apply $\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$ this formula if and only if the term is in this form. Otherwise again write the problem as $e$ to the natural log of your function.
Formula Used:
Trigonometric formula –
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Limit formula –
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan \left( {\dfrac{\pi }{4}} \right)\tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x + \tan x - \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 - \tan x}}{{1 - \tan x}} + \dfrac{{\tan x + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {1 + \dfrac{{2\tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = {e^{\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{2\tan x}}{{1 - \tan x}}} \right)\left( {\dfrac{1}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2(1)(1)}}$
$ = {e^2}$
Therefore, the correct option is 2.
Note: In such questions, if after solving limit you will get the power as infinity apply $\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$ this formula if and only if the term is in this form. Otherwise again write the problem as $e$ to the natural log of your function.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

