
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$ is equal to
1. $e$
2. ${e^2}$
3. $2$
4. $1$
Answer
218.1k+ views
Hint: Solve the function by applying trigonometric $\tan $ function formula. Now, try to solve this further using the limit. If the answer will be infinity then use rules or formulas of limit to get the appropriate answer.
Formula Used:
Trigonometric formula –
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Limit formula –
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan \left( {\dfrac{\pi }{4}} \right)\tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x + \tan x - \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 - \tan x}}{{1 - \tan x}} + \dfrac{{\tan x + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {1 + \dfrac{{2\tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = {e^{\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{2\tan x}}{{1 - \tan x}}} \right)\left( {\dfrac{1}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2(1)(1)}}$
$ = {e^2}$
Therefore, the correct option is 2.
Note: In such questions, if after solving limit you will get the power as infinity apply $\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$ this formula if and only if the term is in this form. Otherwise again write the problem as $e$ to the natural log of your function.
Formula Used:
Trigonometric formula –
$\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$
Limit formula –
$\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{\tan x}}{x} = 1$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to 0} {\left( {\tan \left( {\dfrac{\pi }{4} + x} \right)} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) + \tan x}}{{1 - \tan \left( {\dfrac{\pi }{4}} \right)\tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 + \tan x + \tan x - \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {\dfrac{{1 - \tan x}}{{1 - \tan x}} + \dfrac{{\tan x + \tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = \mathop {\lim }\limits_{x \to 0} {\left( {1 + \dfrac{{2\tan x}}{{1 - \tan x}}} \right)^{\dfrac{1}{x}}}$
$ = {e^{\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{2\tan x}}{{1 - \tan x}}} \right)\left( {\dfrac{1}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{1}{{1 - \tan x}}} \right)\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\tan x}}{x}} \right)}}$
$ = {e^{2(1)(1)}}$
$ = {e^2}$
Therefore, the correct option is 2.
Note: In such questions, if after solving limit you will get the power as infinity apply $\mathop {\lim }\limits_{x \to 0} {\left( {1 + f\left( x \right)} \right)^n} = {e^{\mathop {\lim }\limits_{x \to 0} \left( {f(x) \times n} \right)}}$ this formula if and only if the term is in this form. Otherwise again write the problem as $e$ to the natural log of your function.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

