
Light of frequency \[8 \times {10^5}{\rm{ Hz}}\] is incident on a substance of photoelectric work function 6.125 eV. The maximum kinetic energy of the emitted photoelectrons is
A. 17 eV
B. 22 eV
C. 27 eV
D. 37 eV
Answer
164.7k+ views
Hint: According to the Einstein equation, the maximum kinetic energy of electrons is equal to the energy of the incident light energy packet minus the work function. Photoelectric is the phenomenon where electrons are ejected from a metal surface when light of sufficient frequency is incident on it. Photoelectrons thus are ejected from a material when light is incident on the surface. Different wavelengths will result in different maximum kinetic energy.
Formula used The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where \[h\] is the Plank’s constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
The maximum kinetic energy of photoelectrons is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Complete step by step solution:
Given Frequency of light, \[\upsilon = 8 \times {10^{15}}Hz\]
Work function, \[\phi \]= 6.125 eV
As we know that the energy of the photon is,
\[E = h\upsilon \]
\[\Rightarrow E = 6.6 \times {10^{ - 34}} \times 8 \times {10^{15}}\]
\[\Rightarrow E= 5.28 \times {10^{ - 18}}J\]
\[\Rightarrow E= 33\,eV\]
By Einstein equation,
\[K{E_{\max }} = E - \phi \]
\[\Rightarrow K{E_{\max }}= 33 - 6.125\]
\[\therefore K{E_{\max }} = 27\,eV\]
Therefore, the maximum kinetic energy of the emitted photoelectrons is \[27\,eV\].
Hence option C is the correct answer.
Note: Always remember that maximum kinetic energy of the ejected electrons depends only on the energy of the incident radiation and independent of the intensity of it. Most of the students make this mistake while solving the problem or applying the concept of photoelectric effect.
Formula used The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where \[h\] is the Plank’s constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
The maximum kinetic energy of photoelectrons is given as:
\[K{E_{\max }} = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Complete step by step solution:
Given Frequency of light, \[\upsilon = 8 \times {10^{15}}Hz\]
Work function, \[\phi \]= 6.125 eV
As we know that the energy of the photon is,
\[E = h\upsilon \]
\[\Rightarrow E = 6.6 \times {10^{ - 34}} \times 8 \times {10^{15}}\]
\[\Rightarrow E= 5.28 \times {10^{ - 18}}J\]
\[\Rightarrow E= 33\,eV\]
By Einstein equation,
\[K{E_{\max }} = E - \phi \]
\[\Rightarrow K{E_{\max }}= 33 - 6.125\]
\[\therefore K{E_{\max }} = 27\,eV\]
Therefore, the maximum kinetic energy of the emitted photoelectrons is \[27\,eV\].
Hence option C is the correct answer.
Note: Always remember that maximum kinetic energy of the ejected electrons depends only on the energy of the incident radiation and independent of the intensity of it. Most of the students make this mistake while solving the problem or applying the concept of photoelectric effect.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
