
Let\[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\] be given three points. A line\[y = mx\], \[m > 0\], intersects lines \[AC\] and \[BC\] at point \[P\]and \[Q\] respectively. Let\[{A_1}\] and \[{A_2}\] be the areas of \[\Delta ABC\]and \[\Delta PQC\]respectively, such that \[{A_1} = 3{A_2}\], then find the value of \[m\].
A. \[\dfrac{4}{{15}}\]
B. 1
C. 2
D. 3
Answer
221.4k+ views
Hint: In the given question, three vertices of a triangle are given and the line intersects the two sides of the triangle. By using the determinant method, we will find the area of the triangles. Then using a point-slope form of a linear equation, we will find the equations of the sides of a triangle. Solving the equations with the equation of lines, we will get the coordinates of the intersection points. Again, by using the determinant method, we will find the value of \[m\].
Formula Used:
The area of a triangle with vertices \[A \left( {a, b} \right)\], \[B\left( {c, d} \right)\] and \[C\left( {e, f} \right)\] is:
\[area\left( {\Delta ABC} \right) = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}a&b&1\\c&d&1\\e&f&1\end{array}} \right|\]
A linear equation of a line that is passing through a point \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] :
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Complete step by step solution:
The vertices of the triangle are \[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\].
The equation of a line intersecting the two sides of a triangle is \[y = mx\], \[m > 0\].
Let’s apply the formula of an area of a triangle using determinant.
\[{A_1} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{ - 1}&1&1\\3&4&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 1\left( {4 - 0} \right) - 1\left( {3 - 2} \right) + 1\left( {0 - 8} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 4 - 1 - 8} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{{13}}{2}\]
Apply the formula \[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\] to find the equations of lines \[AC\] and \[BC\].
Equation of line \[AC\] is:
\[y - 0 = \dfrac{{0 - 1}}{{2 - \left( { - 1} \right)}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = \dfrac{{ - 1}}{3}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[x + 3y = 2\]
Equation of line \[BC\] is:
\[y - 0 = \dfrac{{0 - 4}}{{2 - 3}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = 4\left( {x - 2} \right)\]
\[ \Rightarrow \]\[4x - y = 8\]
Let \[\left( {{x_1}, m{x_1}} \right)\]and \[\left( {{x_2}, m{x_2}} \right)\] are the coordinates of the points \[P\]and \[Q\] respectively.
Now, apply the formula of an area of a triangle using determinant.
\[{A_2} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{m{x_1}}&1\\{{x_2}}&{m{x_2}}&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2\left( {m{x_1} - m{x_2}} \right) + 1\left( {m{x_1}{x_2} - m{x_1}{x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2m\left( {{x_1} - {x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
Solve equations \[x + 3y = 2\] and \[y = mx\].
\[x + 3mx = 2\]
\[ \Rightarrow \]\[x = \dfrac{2}{{1 + 3m}}\]
Replace \[x\] by \[{x_1}\]
\[ \Rightarrow \]\[{x_1} = \dfrac{2}{{1 + 3m}}\]
Solve equations \[4x - y = 8\] and \[y = mx\].
\[4x - mx = 8\]
\[ \Rightarrow \]\[x = \dfrac{8}{{4 - m}}\]
Replace \[x\] by \[{x_2}\]
\[ \Rightarrow \]\[{x_2} = \dfrac{8}{{4 - m}}\]
We will put the values of \[{x_1}\] and \[{x_2}\] in the equation \[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
\[{A_2} = m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
It is given that, \[{A_1} = 3{A_2}\].
\[\therefore \dfrac{{13}}{2} = 3m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{8 - 2m - 8 - 24m}}{{\left( {1 + 3m} \right)\left( {4 - m} \right)}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{26m}}{{4 + 11m - 3{m^2}}}} \right|\]
\[ \Rightarrow \]\[\dfrac{1}{{6m}} = \dfrac{{2m}}{{4 + 11m - 3{m^2}}}\]
\[ \Rightarrow \]\[4 + 11m - 3{m^2} = 12{m^2}\]
\[ \Rightarrow \]\[15{m^2} - 11m - 4 = 0\]
\[ \Rightarrow \]\[15{m^2} - 15m + 4m - 4 = 0\]
\[ \Rightarrow \]\[15m\left( {m - 1} \right) + 4\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[\left( {15m + 4} \right)\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[m = \dfrac{{ - 4}}{{15}}\] or \[m = 1\]
It is given that \[m > 0\].
\[ \Rightarrow \] \[m = 1\]
Hence the correct option is option B
Note: Students are often missed the concept that is \[m > 0\]. Also the area of a triangle will be always positive. Sometimes students take \[{A_1} = - \dfrac{{13}}{2}\] which is wrong. For this reason they do not get correct value of \[m\].
Formula Used:
The area of a triangle with vertices \[A \left( {a, b} \right)\], \[B\left( {c, d} \right)\] and \[C\left( {e, f} \right)\] is:
\[area\left( {\Delta ABC} \right) = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}a&b&1\\c&d&1\\e&f&1\end{array}} \right|\]
A linear equation of a line that is passing through a point \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] :
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Complete step by step solution:
The vertices of the triangle are \[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\].
The equation of a line intersecting the two sides of a triangle is \[y = mx\], \[m > 0\].
Let’s apply the formula of an area of a triangle using determinant.
\[{A_1} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{ - 1}&1&1\\3&4&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 1\left( {4 - 0} \right) - 1\left( {3 - 2} \right) + 1\left( {0 - 8} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 4 - 1 - 8} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{{13}}{2}\]
Apply the formula \[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\] to find the equations of lines \[AC\] and \[BC\].
Equation of line \[AC\] is:
\[y - 0 = \dfrac{{0 - 1}}{{2 - \left( { - 1} \right)}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = \dfrac{{ - 1}}{3}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[x + 3y = 2\]
Equation of line \[BC\] is:
\[y - 0 = \dfrac{{0 - 4}}{{2 - 3}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = 4\left( {x - 2} \right)\]
\[ \Rightarrow \]\[4x - y = 8\]
Let \[\left( {{x_1}, m{x_1}} \right)\]and \[\left( {{x_2}, m{x_2}} \right)\] are the coordinates of the points \[P\]and \[Q\] respectively.
Now, apply the formula of an area of a triangle using determinant.
\[{A_2} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{m{x_1}}&1\\{{x_2}}&{m{x_2}}&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2\left( {m{x_1} - m{x_2}} \right) + 1\left( {m{x_1}{x_2} - m{x_1}{x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2m\left( {{x_1} - {x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
Solve equations \[x + 3y = 2\] and \[y = mx\].
\[x + 3mx = 2\]
\[ \Rightarrow \]\[x = \dfrac{2}{{1 + 3m}}\]
Replace \[x\] by \[{x_1}\]
\[ \Rightarrow \]\[{x_1} = \dfrac{2}{{1 + 3m}}\]
Solve equations \[4x - y = 8\] and \[y = mx\].
\[4x - mx = 8\]
\[ \Rightarrow \]\[x = \dfrac{8}{{4 - m}}\]
Replace \[x\] by \[{x_2}\]
\[ \Rightarrow \]\[{x_2} = \dfrac{8}{{4 - m}}\]
We will put the values of \[{x_1}\] and \[{x_2}\] in the equation \[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
\[{A_2} = m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
It is given that, \[{A_1} = 3{A_2}\].
\[\therefore \dfrac{{13}}{2} = 3m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{8 - 2m - 8 - 24m}}{{\left( {1 + 3m} \right)\left( {4 - m} \right)}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{26m}}{{4 + 11m - 3{m^2}}}} \right|\]
\[ \Rightarrow \]\[\dfrac{1}{{6m}} = \dfrac{{2m}}{{4 + 11m - 3{m^2}}}\]
\[ \Rightarrow \]\[4 + 11m - 3{m^2} = 12{m^2}\]
\[ \Rightarrow \]\[15{m^2} - 11m - 4 = 0\]
\[ \Rightarrow \]\[15{m^2} - 15m + 4m - 4 = 0\]
\[ \Rightarrow \]\[15m\left( {m - 1} \right) + 4\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[\left( {15m + 4} \right)\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[m = \dfrac{{ - 4}}{{15}}\] or \[m = 1\]
It is given that \[m > 0\].
\[ \Rightarrow \] \[m = 1\]
Hence the correct option is option B
Note: Students are often missed the concept that is \[m > 0\]. Also the area of a triangle will be always positive. Sometimes students take \[{A_1} = - \dfrac{{13}}{2}\] which is wrong. For this reason they do not get correct value of \[m\].
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

