
Let\[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\] be given three points. A line\[y = mx\], \[m > 0\], intersects lines \[AC\] and \[BC\] at point \[P\]and \[Q\] respectively. Let\[{A_1}\] and \[{A_2}\] be the areas of \[\Delta ABC\]and \[\Delta PQC\]respectively, such that \[{A_1} = 3{A_2}\], then find the value of \[m\].
A. \[\dfrac{4}{{15}}\]
B. 1
C. 2
D. 3
Answer
232.8k+ views
Hint: In the given question, three vertices of a triangle are given and the line intersects the two sides of the triangle. By using the determinant method, we will find the area of the triangles. Then using a point-slope form of a linear equation, we will find the equations of the sides of a triangle. Solving the equations with the equation of lines, we will get the coordinates of the intersection points. Again, by using the determinant method, we will find the value of \[m\].
Formula Used:
The area of a triangle with vertices \[A \left( {a, b} \right)\], \[B\left( {c, d} \right)\] and \[C\left( {e, f} \right)\] is:
\[area\left( {\Delta ABC} \right) = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}a&b&1\\c&d&1\\e&f&1\end{array}} \right|\]
A linear equation of a line that is passing through a point \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] :
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Complete step by step solution:
The vertices of the triangle are \[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\].
The equation of a line intersecting the two sides of a triangle is \[y = mx\], \[m > 0\].
Let’s apply the formula of an area of a triangle using determinant.
\[{A_1} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{ - 1}&1&1\\3&4&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 1\left( {4 - 0} \right) - 1\left( {3 - 2} \right) + 1\left( {0 - 8} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 4 - 1 - 8} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{{13}}{2}\]
Apply the formula \[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\] to find the equations of lines \[AC\] and \[BC\].
Equation of line \[AC\] is:
\[y - 0 = \dfrac{{0 - 1}}{{2 - \left( { - 1} \right)}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = \dfrac{{ - 1}}{3}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[x + 3y = 2\]
Equation of line \[BC\] is:
\[y - 0 = \dfrac{{0 - 4}}{{2 - 3}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = 4\left( {x - 2} \right)\]
\[ \Rightarrow \]\[4x - y = 8\]
Let \[\left( {{x_1}, m{x_1}} \right)\]and \[\left( {{x_2}, m{x_2}} \right)\] are the coordinates of the points \[P\]and \[Q\] respectively.
Now, apply the formula of an area of a triangle using determinant.
\[{A_2} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{m{x_1}}&1\\{{x_2}}&{m{x_2}}&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2\left( {m{x_1} - m{x_2}} \right) + 1\left( {m{x_1}{x_2} - m{x_1}{x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2m\left( {{x_1} - {x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
Solve equations \[x + 3y = 2\] and \[y = mx\].
\[x + 3mx = 2\]
\[ \Rightarrow \]\[x = \dfrac{2}{{1 + 3m}}\]
Replace \[x\] by \[{x_1}\]
\[ \Rightarrow \]\[{x_1} = \dfrac{2}{{1 + 3m}}\]
Solve equations \[4x - y = 8\] and \[y = mx\].
\[4x - mx = 8\]
\[ \Rightarrow \]\[x = \dfrac{8}{{4 - m}}\]
Replace \[x\] by \[{x_2}\]
\[ \Rightarrow \]\[{x_2} = \dfrac{8}{{4 - m}}\]
We will put the values of \[{x_1}\] and \[{x_2}\] in the equation \[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
\[{A_2} = m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
It is given that, \[{A_1} = 3{A_2}\].
\[\therefore \dfrac{{13}}{2} = 3m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{8 - 2m - 8 - 24m}}{{\left( {1 + 3m} \right)\left( {4 - m} \right)}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{26m}}{{4 + 11m - 3{m^2}}}} \right|\]
\[ \Rightarrow \]\[\dfrac{1}{{6m}} = \dfrac{{2m}}{{4 + 11m - 3{m^2}}}\]
\[ \Rightarrow \]\[4 + 11m - 3{m^2} = 12{m^2}\]
\[ \Rightarrow \]\[15{m^2} - 11m - 4 = 0\]
\[ \Rightarrow \]\[15{m^2} - 15m + 4m - 4 = 0\]
\[ \Rightarrow \]\[15m\left( {m - 1} \right) + 4\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[\left( {15m + 4} \right)\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[m = \dfrac{{ - 4}}{{15}}\] or \[m = 1\]
It is given that \[m > 0\].
\[ \Rightarrow \] \[m = 1\]
Hence the correct option is option B
Note: Students are often missed the concept that is \[m > 0\]. Also the area of a triangle will be always positive. Sometimes students take \[{A_1} = - \dfrac{{13}}{2}\] which is wrong. For this reason they do not get correct value of \[m\].
Formula Used:
The area of a triangle with vertices \[A \left( {a, b} \right)\], \[B\left( {c, d} \right)\] and \[C\left( {e, f} \right)\] is:
\[area\left( {\Delta ABC} \right) = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}a&b&1\\c&d&1\\e&f&1\end{array}} \right|\]
A linear equation of a line that is passing through a point \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] :
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Complete step by step solution:
The vertices of the triangle are \[A \left( {-1, 1} \right)\], \[B\left( {3, 4} \right)\]and \[C\left( {2, 0} \right)\].
The equation of a line intersecting the two sides of a triangle is \[y = mx\], \[m > 0\].
Let’s apply the formula of an area of a triangle using determinant.
\[{A_1} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{ - 1}&1&1\\3&4&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 1\left( {4 - 0} \right) - 1\left( {3 - 2} \right) + 1\left( {0 - 8} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{1}{2}\left| {\left[ { - 4 - 1 - 8} \right]} \right|\]
\[ \Rightarrow \]\[{A_1} = \dfrac{{13}}{2}\]
Apply the formula \[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\] to find the equations of lines \[AC\] and \[BC\].
Equation of line \[AC\] is:
\[y - 0 = \dfrac{{0 - 1}}{{2 - \left( { - 1} \right)}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = \dfrac{{ - 1}}{3}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[x + 3y = 2\]
Equation of line \[BC\] is:
\[y - 0 = \dfrac{{0 - 4}}{{2 - 3}}\left( {x - 2} \right)\]
\[ \Rightarrow \]\[y = 4\left( {x - 2} \right)\]
\[ \Rightarrow \]\[4x - y = 8\]
Let \[\left( {{x_1}, m{x_1}} \right)\]and \[\left( {{x_2}, m{x_2}} \right)\] are the coordinates of the points \[P\]and \[Q\] respectively.
Now, apply the formula of an area of a triangle using determinant.
\[{A_2} = \dfrac{1}{2}\left| {\begin{array}{*{20}{c}}{{x_1}}&{m{x_1}}&1\\{{x_2}}&{m{x_2}}&1\\2&0&1\end{array}} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2\left( {m{x_1} - m{x_2}} \right) + 1\left( {m{x_1}{x_2} - m{x_1}{x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = \dfrac{1}{2}\left| {\left[ {2m\left( {{x_1} - {x_2}} \right)} \right]} \right|\]
\[ \Rightarrow \]\[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
Solve equations \[x + 3y = 2\] and \[y = mx\].
\[x + 3mx = 2\]
\[ \Rightarrow \]\[x = \dfrac{2}{{1 + 3m}}\]
Replace \[x\] by \[{x_1}\]
\[ \Rightarrow \]\[{x_1} = \dfrac{2}{{1 + 3m}}\]
Solve equations \[4x - y = 8\] and \[y = mx\].
\[4x - mx = 8\]
\[ \Rightarrow \]\[x = \dfrac{8}{{4 - m}}\]
Replace \[x\] by \[{x_2}\]
\[ \Rightarrow \]\[{x_2} = \dfrac{8}{{4 - m}}\]
We will put the values of \[{x_1}\] and \[{x_2}\] in the equation \[{A_2} = m\left| {{x_1} - {x_2}} \right|\]
\[{A_2} = m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
It is given that, \[{A_1} = 3{A_2}\].
\[\therefore \dfrac{{13}}{2} = 3m\left| {\dfrac{2}{{1 + 3m}} - \dfrac{8}{{4 - m}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{8 - 2m - 8 - 24m}}{{\left( {1 + 3m} \right)\left( {4 - m} \right)}}} \right|\]
\[ \Rightarrow \]\[\dfrac{{13}}{2} = 3m\left| {\dfrac{{26m}}{{4 + 11m - 3{m^2}}}} \right|\]
\[ \Rightarrow \]\[\dfrac{1}{{6m}} = \dfrac{{2m}}{{4 + 11m - 3{m^2}}}\]
\[ \Rightarrow \]\[4 + 11m - 3{m^2} = 12{m^2}\]
\[ \Rightarrow \]\[15{m^2} - 11m - 4 = 0\]
\[ \Rightarrow \]\[15{m^2} - 15m + 4m - 4 = 0\]
\[ \Rightarrow \]\[15m\left( {m - 1} \right) + 4\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[\left( {15m + 4} \right)\left( {m - 1} \right) = 0\]
\[ \Rightarrow \]\[m = \dfrac{{ - 4}}{{15}}\] or \[m = 1\]
It is given that \[m > 0\].
\[ \Rightarrow \] \[m = 1\]
Hence the correct option is option B
Note: Students are often missed the concept that is \[m > 0\]. Also the area of a triangle will be always positive. Sometimes students take \[{A_1} = - \dfrac{{13}}{2}\] which is wrong. For this reason they do not get correct value of \[m\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

