
Let \[z\] and \[w\] be two complex numbers such that \[w = z\bar z - 2z + 2\], \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then what is the minimum value of \[n \in \mathbb{N}\], for which \[{w^n}\] is real?
Answer
233.1k+ views
Hint: Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]. Substituting \[z = x + iy\] in the given expression \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and simplifying it the value of \[y\] will be found. Put the value of \[y\] in \[z = x + iy\]. Find \[\bar z\] and substituting in \[w = z\bar z - 2z + 2\], find \[w\] and hence find its real part i.e. \[{\mathop{\rm Re}\nolimits} \left( w \right)\]. Find the value of \[x\] for which \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then put the value of \[x\] in \[w\] and find its polar form. Find \[{w^n}\] and put \[n = 4\].
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

