
Let \[z\] and \[w\] be two complex numbers such that \[w = z\bar z - 2z + 2\], \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then what is the minimum value of \[n \in \mathbb{N}\], for which \[{w^n}\] is real?
Answer
162.9k+ views
Hint: Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]. Substituting \[z = x + iy\] in the given expression \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and simplifying it the value of \[y\] will be found. Put the value of \[y\] in \[z = x + iy\]. Find \[\bar z\] and substituting in \[w = z\bar z - 2z + 2\], find \[w\] and hence find its real part i.e. \[{\mathop{\rm Re}\nolimits} \left( w \right)\]. Find the value of \[x\] for which \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then put the value of \[x\] in \[w\] and find its polar form. Find \[{w^n}\] and put \[n = 4\].
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Recently Updated Pages
JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

IIT Full Form

Difference Between Metals and Non-Metals for JEE Main 2024

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Reaction of Metals With Acids for JEE

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
