
Let \[z\] and \[w\] be two complex numbers such that \[w = z\bar z - 2z + 2\], \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then what is the minimum value of \[n \in \mathbb{N}\], for which \[{w^n}\] is real?
Answer
216k+ views
Hint: Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]. Substituting \[z = x + iy\] in the given expression \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\] and simplifying it the value of \[y\] will be found. Put the value of \[y\] in \[z = x + iy\]. Find \[\bar z\] and substituting in \[w = z\bar z - 2z + 2\], find \[w\] and hence find its real part i.e. \[{\mathop{\rm Re}\nolimits} \left( w \right)\]. Find the value of \[x\] for which \[{\mathop{\rm Re}\nolimits} \left( w \right)\] has a minimum value. Then put the value of \[x\] in \[w\] and find its polar form. Find \[{w^n}\] and put \[n = 4\].
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Formula Used:
For two complex numbers \[{z_1}\] and \[{z_2}\], \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\], provided \[{z_2} \ne 0\]
The modulus of \[z = x + iy\] is \[\left| z \right| = \sqrt {{x^2} + {y^2}} \]
The conjugate of \[z = x + iy\] is \[\bar z = x - iy\]
Polar form of \[z = x + iy\] is \[z = r\left( {\cos \theta + i\sin \theta } \right)\], where \[r = \left| z \right|\] and \[\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[{e^{iy}} = \cos y + i\sin y\]
Complete step-by-step solution:
Let \[z = x + iy\], where \[x \in \mathbb{R}\] and \[y \in \mathbb{R}\]
Given that \[\left| {\dfrac{{z + i}}{{z - 3i}}} \right| = 1\]
Use the property \[\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = \dfrac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}}\]
\[ \Rightarrow \dfrac{{\left| {z + i} \right|}}{{\left| {z - 3i} \right|}} = 1\]
Cross multiply.
\[ \Rightarrow \left| {z + i} \right| = \left| {z - 3i} \right|\]
We assumed \[z = x + iy\]
\[ \Rightarrow \left| {x + iy + i} \right| = \left| {x + iy - 3i} \right|\]
Separate the real part and the imaginary part.
\[ \Rightarrow \left| {x + i\left( {y + 1} \right)} \right| = \left| {x + i\left( {y - 3} \right)} \right|\]
Use the definition \[\left| {x + iy} \right| = \sqrt {{x^2} + {y^2}} \]
\[ \Rightarrow \sqrt {{x^2} + {{\left( {y + 1} \right)}^2}} = \sqrt {{x^2} + {{\left( {y - 3} \right)}^2}} \]
Take square on both sides.
\[ \Rightarrow {x^2} + {\left( {y + 1} \right)^2} = {x^2} + {\left( {y - 3} \right)^2}\]
Cancel the term \[{x^2}\] from both sides.
\[ \Rightarrow {\left( {y + 1} \right)^2} = {\left( {y - 3} \right)^2}\]
Use the identities \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\] and \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
\[ \Rightarrow {y^2} + 2y + 1 = {y^2} - 6y + 9\]
Cancel the term \[{y^2}\] from both sides
\[ \Rightarrow 2y + 1 = - 6y + 9\]
\[ \Rightarrow 2y + 6y = 9 - 1\]
\[ \Rightarrow 8y = 8\]
\[ \Rightarrow y = 1\]
\[\therefore z = x + i\]
\[ \Rightarrow \bar z = x - i\]
Given that \[w = z\bar z - 2z + 2\]
Substitute \[z = x + i\] and \[\bar z = x - i\]
\[ \Rightarrow w = \left( {x + i} \right)\left( {x - i} \right) - 2\left( {x + i} \right) + 2\]
Use the identity \[\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}\]
\[ \Rightarrow w = {x^2} - {i^2} - 2x - 2i + 2\]
Put \[{i^2} = - 1\]
\[ \Rightarrow w = {x^2} + 1 - 2x - 2i + 2\]
\[ \Rightarrow w = {x^2} - 2x + 3 - 2i\]
\[\therefore {\mathop{\rm Re}\nolimits} \left( w \right) = {x^2} - 2x + 3\]
It can be expressed as \[{\mathop{\rm Re}\nolimits} \left( w \right) = {\left( {x - 1} \right)^2} + 2\]
Since a square expression is always non-negative, so the minimum value of \[{\left( {x - 1} \right)^2}\] is \[0\] and hence the minimum value of \[{\mathop{\rm Re}\nolimits} \left( w \right)\] is \[2\], which occurs at \[x = 1\].
At \[x = 1\], \[ \Rightarrow w = 1 - 2 + 3 - 2i = 2 - 2i = 2\left( {1 - i} \right)\]
Let us find the polar form of \[w\].
Multiply and divide by \[\sqrt 2 \]
\[ \Rightarrow w = 2\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }} - i\dfrac{1}{{\sqrt 2 }}} \right)\]
We know that \[\sin \dfrac{\pi }{4} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow w = 2\sqrt 2 \left( {\cos \dfrac{\pi }{4} - i\sin \dfrac{\pi }{4}} \right)\]
\[\cos \left( { - \theta } \right) = \cos \theta \] and \[\sin \left( { - \theta } \right) = - \sin \theta \]
\[ \Rightarrow w = 2\sqrt 2 \left\{ {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right\}\]
Use the identity \[{e^{iy}} = \cos y + i\sin y\]
\[ \Rightarrow w = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}\]
\[\therefore {w^n} = {\left( {2\sqrt 2 {e^{ - i\dfrac{\pi }{4}}}} \right)^n} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4}n}}\]
If we take \[n = 4\], then
\[{w^4} = 2\sqrt 2 {e^{ - i\dfrac{\pi }{4} \times 4}} = 2\sqrt 2 {e^{ - i\pi }} = 2\sqrt 2 \left\{ {\cos \left( { - \pi } \right) + i\sin \left( { - \pi } \right)} \right\} = 2\sqrt 2 \left\{ {\cos \left( \pi \right) + i\sin \left( \pi \right)} \right\} = 2\sqrt 2 \left\{ {\left( { - 1} \right) + i\left( 0 \right)} \right\} = - 2\sqrt 2 \], which is real.
Hence the minimum value of \[n\] is \[4\].
Note: Any square expression is always non-negative and hence its minimum value is equal to zero. A complex number will be real whenever it’s imaginary part will be equal to zero. To find conjugate of a complex number, you just need to change the sign of the imaginary part.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

