
Let the function $f:\left[ {0,1} \right] \to \mathbb{R}$ be defined by $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}}$. Then what is the value of $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$?
Answer
164.1k+ views
Hint: A function $f\left( x \right)$ is given. Find the function $f\left( {1 - x} \right)$. Adding the functions, $f\left( x \right) + f\left( {1 - x} \right) = 1$. Omit $f\left( {\dfrac{1}{2}} \right)$ and arrange the given expression taking the first and last term within a bracket, then the second and the previous last within a bracket, same for other terms. There are a total of $19$ brackets. All the terms within brackets are of the form $f\left( x \right) + f\left( {1 - x} \right)$. Substitute $f\left( x \right) + f\left( {1 - x} \right) = 1$.
Formula Used:
${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
Average of two numbers $a$ and $b$ is $\dfrac{1}{2}\left( {a + b} \right)$
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} - - - - - \left( i \right)$, where $f:\left[ {0,1} \right] \to \mathbb{R}$
If we replace $x$ by $\left( {1 - x} \right)$, then $f\left( {1 - x} \right) = \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}}$
Use the formula ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{4}{{{4^x}}} + 2} \right)}}$
Simplify this expression.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{{4 + 2 \cdot {4^x}}}{{{4^x}}}} \right)}} = \dfrac{4}{{{4^x}}} \times \dfrac{{{4^x}}}{{4 + 2 \cdot {4^x}}} = \dfrac{4}{{4 + 2 \cdot {4^x}}}$
Take $2$ as common from numerator and denominator.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{4}{{2\left( {2 + {4^x}} \right)}} = \dfrac{2}{{2 + {4^x}}} - - - - - \left( {ii} \right)$
Adding $\left( i \right)$ and $\left( {ii} \right)$, we get
$f\left( x \right) + f\left( {1 - x} \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{2}{{2 + {4^x}}} = \dfrac{{2 + {4^x}}}{{2 + {4^x}}} = 1 - - - - - \left( {iii} \right)$
$\therefore $ The given expression is $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
Each term of the expression is a value of the function $f\left( x \right)$ at a number. The first term is at $x = \dfrac{1}{{40}}$ and the preceding term of the last term is at $x = \dfrac{{39}}{{40}}$. So, the middle term is at $\dfrac{1}{2}\left( {\dfrac{1}{{40}} + \dfrac{{39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{1 + 39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{40}}{{40}}} \right) = \dfrac{1}{2} \times 1 = \dfrac{1}{2}$
So, we can rewrite the given expression as
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{1}{2}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
The middle term and the last term in the expression are equal. So, cancel the term $f\left( {\dfrac{1}{2}} \right)$.
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)$
Arrange the terms.
$ = \left\{ {f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)} \right\} + \left\{ {f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{{38}}{{40}}} \right)} \right\} + ..... + \left\{ {f\left( {\dfrac{{19}}{{40}}} \right) + f\left( {\dfrac{{21}}{{40}}} \right)} \right\}$
From $\left( {iii} \right)$, we can conclude that the values of all the terms within the brackets are equal to $1$. There are a total of $19$ brackets.
So, the required value is sum of $19$ times $1$ i.e. $19$
Hence, the required value is $19$.
Note: Be careful while finding the middle term. If a series follows a pattern then the value of the middle term is the average of the ending values.
Formula Used:
${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
Average of two numbers $a$ and $b$ is $\dfrac{1}{2}\left( {a + b} \right)$
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} - - - - - \left( i \right)$, where $f:\left[ {0,1} \right] \to \mathbb{R}$
If we replace $x$ by $\left( {1 - x} \right)$, then $f\left( {1 - x} \right) = \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}}$
Use the formula ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{4}{{{4^x}}} + 2} \right)}}$
Simplify this expression.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{{4 + 2 \cdot {4^x}}}{{{4^x}}}} \right)}} = \dfrac{4}{{{4^x}}} \times \dfrac{{{4^x}}}{{4 + 2 \cdot {4^x}}} = \dfrac{4}{{4 + 2 \cdot {4^x}}}$
Take $2$ as common from numerator and denominator.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{4}{{2\left( {2 + {4^x}} \right)}} = \dfrac{2}{{2 + {4^x}}} - - - - - \left( {ii} \right)$
Adding $\left( i \right)$ and $\left( {ii} \right)$, we get
$f\left( x \right) + f\left( {1 - x} \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{2}{{2 + {4^x}}} = \dfrac{{2 + {4^x}}}{{2 + {4^x}}} = 1 - - - - - \left( {iii} \right)$
$\therefore $ The given expression is $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
Each term of the expression is a value of the function $f\left( x \right)$ at a number. The first term is at $x = \dfrac{1}{{40}}$ and the preceding term of the last term is at $x = \dfrac{{39}}{{40}}$. So, the middle term is at $\dfrac{1}{2}\left( {\dfrac{1}{{40}} + \dfrac{{39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{1 + 39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{40}}{{40}}} \right) = \dfrac{1}{2} \times 1 = \dfrac{1}{2}$
So, we can rewrite the given expression as
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{1}{2}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
The middle term and the last term in the expression are equal. So, cancel the term $f\left( {\dfrac{1}{2}} \right)$.
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)$
Arrange the terms.
$ = \left\{ {f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)} \right\} + \left\{ {f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{{38}}{{40}}} \right)} \right\} + ..... + \left\{ {f\left( {\dfrac{{19}}{{40}}} \right) + f\left( {\dfrac{{21}}{{40}}} \right)} \right\}$
From $\left( {iii} \right)$, we can conclude that the values of all the terms within the brackets are equal to $1$. There are a total of $19$ brackets.
So, the required value is sum of $19$ times $1$ i.e. $19$
Hence, the required value is $19$.
Note: Be careful while finding the middle term. If a series follows a pattern then the value of the middle term is the average of the ending values.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
