
Let the function $f:\left[ {0,1} \right] \to \mathbb{R}$ be defined by $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}}$. Then what is the value of $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$?
Answer
216k+ views
Hint: A function $f\left( x \right)$ is given. Find the function $f\left( {1 - x} \right)$. Adding the functions, $f\left( x \right) + f\left( {1 - x} \right) = 1$. Omit $f\left( {\dfrac{1}{2}} \right)$ and arrange the given expression taking the first and last term within a bracket, then the second and the previous last within a bracket, same for other terms. There are a total of $19$ brackets. All the terms within brackets are of the form $f\left( x \right) + f\left( {1 - x} \right)$. Substitute $f\left( x \right) + f\left( {1 - x} \right) = 1$.
Formula Used:
${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
Average of two numbers $a$ and $b$ is $\dfrac{1}{2}\left( {a + b} \right)$
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} - - - - - \left( i \right)$, where $f:\left[ {0,1} \right] \to \mathbb{R}$
If we replace $x$ by $\left( {1 - x} \right)$, then $f\left( {1 - x} \right) = \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}}$
Use the formula ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{4}{{{4^x}}} + 2} \right)}}$
Simplify this expression.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{{4 + 2 \cdot {4^x}}}{{{4^x}}}} \right)}} = \dfrac{4}{{{4^x}}} \times \dfrac{{{4^x}}}{{4 + 2 \cdot {4^x}}} = \dfrac{4}{{4 + 2 \cdot {4^x}}}$
Take $2$ as common from numerator and denominator.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{4}{{2\left( {2 + {4^x}} \right)}} = \dfrac{2}{{2 + {4^x}}} - - - - - \left( {ii} \right)$
Adding $\left( i \right)$ and $\left( {ii} \right)$, we get
$f\left( x \right) + f\left( {1 - x} \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{2}{{2 + {4^x}}} = \dfrac{{2 + {4^x}}}{{2 + {4^x}}} = 1 - - - - - \left( {iii} \right)$
$\therefore $ The given expression is $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
Each term of the expression is a value of the function $f\left( x \right)$ at a number. The first term is at $x = \dfrac{1}{{40}}$ and the preceding term of the last term is at $x = \dfrac{{39}}{{40}}$. So, the middle term is at $\dfrac{1}{2}\left( {\dfrac{1}{{40}} + \dfrac{{39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{1 + 39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{40}}{{40}}} \right) = \dfrac{1}{2} \times 1 = \dfrac{1}{2}$
So, we can rewrite the given expression as
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{1}{2}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
The middle term and the last term in the expression are equal. So, cancel the term $f\left( {\dfrac{1}{2}} \right)$.
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)$
Arrange the terms.
$ = \left\{ {f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)} \right\} + \left\{ {f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{{38}}{{40}}} \right)} \right\} + ..... + \left\{ {f\left( {\dfrac{{19}}{{40}}} \right) + f\left( {\dfrac{{21}}{{40}}} \right)} \right\}$
From $\left( {iii} \right)$, we can conclude that the values of all the terms within the brackets are equal to $1$. There are a total of $19$ brackets.
So, the required value is sum of $19$ times $1$ i.e. $19$
Hence, the required value is $19$.
Note: Be careful while finding the middle term. If a series follows a pattern then the value of the middle term is the average of the ending values.
Formula Used:
${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
Average of two numbers $a$ and $b$ is $\dfrac{1}{2}\left( {a + b} \right)$
Complete step by step solution:
The given function is $f\left( x \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} - - - - - \left( i \right)$, where $f:\left[ {0,1} \right] \to \mathbb{R}$
If we replace $x$ by $\left( {1 - x} \right)$, then $f\left( {1 - x} \right) = \dfrac{{{4^{1 - x}}}}{{{4^{1 - x}} + 2}}$
Use the formula ${a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}$
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{4}{{{4^x}}} + 2} \right)}}$
Simplify this expression.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{{\left( {\dfrac{4}{{{4^x}}}} \right)}}{{\left( {\dfrac{{4 + 2 \cdot {4^x}}}{{{4^x}}}} \right)}} = \dfrac{4}{{{4^x}}} \times \dfrac{{{4^x}}}{{4 + 2 \cdot {4^x}}} = \dfrac{4}{{4 + 2 \cdot {4^x}}}$
Take $2$ as common from numerator and denominator.
$ \Rightarrow f\left( {1 - x} \right) = \dfrac{4}{{2\left( {2 + {4^x}} \right)}} = \dfrac{2}{{2 + {4^x}}} - - - - - \left( {ii} \right)$
Adding $\left( i \right)$ and $\left( {ii} \right)$, we get
$f\left( x \right) + f\left( {1 - x} \right) = \dfrac{{{4^x}}}{{{4^x} + 2}} + \dfrac{2}{{2 + {4^x}}} = \dfrac{{2 + {4^x}}}{{2 + {4^x}}} = 1 - - - - - \left( {iii} \right)$
$\therefore $ The given expression is $f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{3}{{40}}} \right) + ..... + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
Each term of the expression is a value of the function $f\left( x \right)$ at a number. The first term is at $x = \dfrac{1}{{40}}$ and the preceding term of the last term is at $x = \dfrac{{39}}{{40}}$. So, the middle term is at $\dfrac{1}{2}\left( {\dfrac{1}{{40}} + \dfrac{{39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{1 + 39}}{{40}}} \right) = \dfrac{1}{2}\left( {\dfrac{{40}}{{40}}} \right) = \dfrac{1}{2} \times 1 = \dfrac{1}{2}$
So, we can rewrite the given expression as
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{1}{2}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right) - f\left( {\dfrac{1}{2}} \right)$
The middle term and the last term in the expression are equal. So, cancel the term $f\left( {\dfrac{1}{2}} \right)$.
$ = f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{2}{{40}}} \right) + ..... + f\left( {\dfrac{{38}}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)$
Arrange the terms.
$ = \left\{ {f\left( {\dfrac{1}{{40}}} \right) + f\left( {\dfrac{{39}}{{40}}} \right)} \right\} + \left\{ {f\left( {\dfrac{2}{{40}}} \right) + f\left( {\dfrac{{38}}{{40}}} \right)} \right\} + ..... + \left\{ {f\left( {\dfrac{{19}}{{40}}} \right) + f\left( {\dfrac{{21}}{{40}}} \right)} \right\}$
From $\left( {iii} \right)$, we can conclude that the values of all the terms within the brackets are equal to $1$. There are a total of $19$ brackets.
So, the required value is sum of $19$ times $1$ i.e. $19$
Hence, the required value is $19$.
Note: Be careful while finding the middle term. If a series follows a pattern then the value of the middle term is the average of the ending values.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

