
Let \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\] . Then \[{2^n}E\] is divisible by
A. \[{}^n{C_{\dfrac{n}{2}}}\]
B. \[{}^{2n}{C_n}\]
C. \[{}^{3n}{C_n}\]
D. \[{}^{4n}{C_{2n}}\]
Answer
163.8k+ views
Hint: First, simplify the given equation by multiplying and dividing the right-hand side by \[\left( {2n} \right)!\], and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]. Then, simplify the equation in terms of the factorial. After that, further simplify the equation by multiplying the numerator and denominator by \[n!\]. In the end, multiply both sides by \[{2^n}\] and solve it to get the required answer.
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Complete step by step solution: The given equation is \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\].
Let’s simplify the given equation.
Multiply and divide the right-hand side by \[\left( {2n} \right)!\] and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]
We get,
\[E = \dfrac{{\left( {2n} \right)!\left( {2n + 1} \right)\left( {2n + 2} \right)\left( {2n + 3} \right)...\left( {4n - 2} \right)\left( {4n - 1} \right)\left( {4n} \right)}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the numerator.
\[E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
\[ \Rightarrow E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!{2^n}\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Again, multiply and divide the right-hand side by \[n!\].
We get,
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!n!\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the denominator.
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}\]
Now substitute the value of the above equation in \[{2^n}E\].
\[{2^n}E = {2^n}\left( {\dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}} \right)\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {4n - 2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = n!{}^{4n}{C_{2n}}\]
From the above equation, we observe that \[{2^n}E\] is divisible by \[{}^{4n}{C_{2n}}\].
Option ‘D’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Factorial is used to solve the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Complete step by step solution: The given equation is \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\].
Let’s simplify the given equation.
Multiply and divide the right-hand side by \[\left( {2n} \right)!\] and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]
We get,
\[E = \dfrac{{\left( {2n} \right)!\left( {2n + 1} \right)\left( {2n + 2} \right)\left( {2n + 3} \right)...\left( {4n - 2} \right)\left( {4n - 1} \right)\left( {4n} \right)}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the numerator.
\[E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
\[ \Rightarrow E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!{2^n}\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Again, multiply and divide the right-hand side by \[n!\].
We get,
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!n!\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the denominator.
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}\]
Now substitute the value of the above equation in \[{2^n}E\].
\[{2^n}E = {2^n}\left( {\dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}} \right)\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {4n - 2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = n!{}^{4n}{C_{2n}}\]
From the above equation, we observe that \[{2^n}E\] is divisible by \[{}^{4n}{C_{2n}}\].
Option ‘D’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Factorial is used to solve the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
