
Let \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\] . Then \[{2^n}E\] is divisible by
A. \[{}^n{C_{\dfrac{n}{2}}}\]
B. \[{}^{2n}{C_n}\]
C. \[{}^{3n}{C_n}\]
D. \[{}^{4n}{C_{2n}}\]
Answer
218.1k+ views
Hint: First, simplify the given equation by multiplying and dividing the right-hand side by \[\left( {2n} \right)!\], and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]. Then, simplify the equation in terms of the factorial. After that, further simplify the equation by multiplying the numerator and denominator by \[n!\]. In the end, multiply both sides by \[{2^n}\] and solve it to get the required answer.
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Complete step by step solution: The given equation is \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\].
Let’s simplify the given equation.
Multiply and divide the right-hand side by \[\left( {2n} \right)!\] and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]
We get,
\[E = \dfrac{{\left( {2n} \right)!\left( {2n + 1} \right)\left( {2n + 2} \right)\left( {2n + 3} \right)...\left( {4n - 2} \right)\left( {4n - 1} \right)\left( {4n} \right)}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the numerator.
\[E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
\[ \Rightarrow E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!{2^n}\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Again, multiply and divide the right-hand side by \[n!\].
We get,
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!n!\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the denominator.
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}\]
Now substitute the value of the above equation in \[{2^n}E\].
\[{2^n}E = {2^n}\left( {\dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}} \right)\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {4n - 2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = n!{}^{4n}{C_{2n}}\]
From the above equation, we observe that \[{2^n}E\] is divisible by \[{}^{4n}{C_{2n}}\].
Option ‘D’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Factorial is used to solve the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Complete step by step solution: The given equation is \[E = \left( {2n + 1} \right)\left( {2n + 3} \right)\left( {2n + 5} \right)...\left( {4n - 3} \right)\left( {4n - 1} \right)\] where \[n > 1\].
Let’s simplify the given equation.
Multiply and divide the right-hand side by \[\left( {2n} \right)!\] and \[\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)\]
We get,
\[E = \dfrac{{\left( {2n} \right)!\left( {2n + 1} \right)\left( {2n + 2} \right)\left( {2n + 3} \right)...\left( {4n - 2} \right)\left( {4n - 1} \right)\left( {4n} \right)}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the numerator.
\[E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n + 2} \right)\left( {2n + 4} \right)\left( {2n + 6} \right)...\left( {4n - 2} \right)\left( {4n} \right)}}\]
\[ \Rightarrow E = \dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!{2^n}\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Again, multiply and divide the right-hand side by \[n!\].
We get,
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!n!\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)...\left( {2n - 1} \right)\left( {2n} \right)}}\]
Use the factorial property \[n! = n\left( {n - 1} \right)!\] in the denominator.
\[E = \dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}\]
Now substitute the value of the above equation in \[{2^n}E\].
\[{2^n}E = {2^n}\left( {\dfrac{{n!\left( {4n} \right)!}}{{{2^n}\left( {2n} \right)!\left( {2n} \right)!}}} \right)\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = \left( {\dfrac{{\left( {4n} \right)!}}{{\left( {2n} \right)!\left( {4n - 2n} \right)!}}} \right)n!\]
\[ \Rightarrow {2^n}E = n!{}^{4n}{C_{2n}}\]
From the above equation, we observe that \[{2^n}E\] is divisible by \[{}^{4n}{C_{2n}}\].
Option ‘D’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Factorial is used to solve the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\].
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

