
Let \[{{A}_{n}}\] be the sum of the first $n$ terms of the geometric series \[704+\dfrac{704}{2}+\dfrac{704}{4}+\dfrac{704}{8}+...\] and \[{{B}_{n}}\] be the sum of the first $n$ terms of the geometric series \[1984+\dfrac{1984}{2}+\dfrac{1984}{4}+\dfrac{1984}{8}+...\]. If \[{{A}_{n}}={{B}_{n}}\], then the value of $n$ is (where \[n\in N\])
A. \[4\]
B. \[5\]
C. \[6\]
D. \[7\]
Answer
216.3k+ views
Hint: In this question, we have to find the number of terms in the given series. For this, the sum of $n$ terms of both the series to be found and by substituting those values in the given condition \[{{A}_{n}}={{B}_{n}}\]. On simplifying, we get the required $n$ terms.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms of a geometric series is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$- Sum of the $n$ terms; $n$ - Number of terms; $a$ - First term; $r$- Common ratio.
Complete step by step solution: Given geometric series are:
\[{{A}_{n}}=704+\dfrac{704}{2}+\dfrac{704}{4}+\dfrac{704}{8}+...\]
And
\[{{B}_{n}}=1984+\dfrac{1984}{2}+\dfrac{1984}{4}+\dfrac{1984}{8}+...\]
Then, the sum of the $n$ terms of the series \[{{A}_{n}}\] is
\[\begin{align}
& a=704;r=\dfrac{{}^{704}/{}_{2}}{704}=\dfrac{1}{2} \\
& {{A}_{n}}=\dfrac{704\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)}{1-\dfrac{1}{2}} \\
& \text{ }=704\times 2\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right) \\
\end{align}\]
The sum of the $n$ terms of the series \[{{B}_{n}}\] is
\[\begin{align}
& a=1984;r=\dfrac{{}^{1984}/{}_{2}}{1984}=\dfrac{1}{2} \\
& {{B}_{n}}=\dfrac{1984\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)}{1-\dfrac{1}{2}} \\
& \text{ }=1984\times \dfrac{2}{3}\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
\end{align}\]
But it is given that, \[{{A}_{n}}={{B}_{n}}\]
So, on equating, we get
\[\begin{align}
& {{A}_{n}}={{B}_{n}} \\
& \Rightarrow 704\times 2\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=1984\times \dfrac{2}{3}\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 2112\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=1984\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 33\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=31\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 33-33{{\left( \dfrac{1}{2} \right)}^{n}}=31-31{{\left( \dfrac{-1}{2} \right)}^{n}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 33-31=33{{\left( \dfrac{1}{2} \right)}^{n}}-31{{\left( \dfrac{-1}{2} \right)}^{n}} \\
& \Rightarrow 2\times {{2}^{n}}=33{{(1)}^{n}}-31{{(-1)}^{n}} \\
& \Rightarrow {{2}^{n+1}}=33-31{{(-1)}^{n}} \\
& \Rightarrow {{2}^{n+1}}+31{{(-1)}^{n}}=33\text{ }...(1) \\
\end{align}\]
Then, substituting the given options for $n$ in (1), we get
If \[n=4;\] then
\[\begin{align}
& {{2}^{n+1}}+31{{(-1)}^{n}}={{2}^{4+1}}+31{{(-1)}^{4}} \\
& \text{ }={{2}^{5}}+31 \\
& \text{ =}32+31 \\
& \text{ =}63\ne 33 \\
\end{align}\]
Thus, the first option is incorrect.
If \[n=5;\] then
\[\begin{align}
& {{2}^{n+1}}+31{{(-1)}^{n}}={{2}^{5+1}}+31{{(-1)}^{5}} \\
& \text{ }={{2}^{6}}-31 \\
& \text{ }=64-31=33 \\
\end{align}\]
Thus, the required value of the number of terms in the given series is \[n=5\].
Option ‘B’ is correct
Note: Here, we have to substitute the given values of $n$ in the obtained equation, in order to get the correct value. Since the given series are in geometric progression, we can use the sum of $n$ terms formula for finding the required value.
Formula Used: If the series is a geometric series, then the sum of the $n$ terms of a geometric series is calculated by
${{S}_{n}}=\dfrac{a({{r}^{n}}-1)}{r-1}$ where $r=\dfrac{{{a}_{n}}}{{{a}_{n-1}}}$
Here ${{S}_{n}}$- Sum of the $n$ terms; $n$ - Number of terms; $a$ - First term; $r$- Common ratio.
Complete step by step solution: Given geometric series are:
\[{{A}_{n}}=704+\dfrac{704}{2}+\dfrac{704}{4}+\dfrac{704}{8}+...\]
And
\[{{B}_{n}}=1984+\dfrac{1984}{2}+\dfrac{1984}{4}+\dfrac{1984}{8}+...\]
Then, the sum of the $n$ terms of the series \[{{A}_{n}}\] is
\[\begin{align}
& a=704;r=\dfrac{{}^{704}/{}_{2}}{704}=\dfrac{1}{2} \\
& {{A}_{n}}=\dfrac{704\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)}{1-\dfrac{1}{2}} \\
& \text{ }=704\times 2\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right) \\
\end{align}\]
The sum of the $n$ terms of the series \[{{B}_{n}}\] is
\[\begin{align}
& a=1984;r=\dfrac{{}^{1984}/{}_{2}}{1984}=\dfrac{1}{2} \\
& {{B}_{n}}=\dfrac{1984\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)}{1-\dfrac{1}{2}} \\
& \text{ }=1984\times \dfrac{2}{3}\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
\end{align}\]
But it is given that, \[{{A}_{n}}={{B}_{n}}\]
So, on equating, we get
\[\begin{align}
& {{A}_{n}}={{B}_{n}} \\
& \Rightarrow 704\times 2\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=1984\times \dfrac{2}{3}\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 2112\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=1984\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 33\left( 1-{{\left( \dfrac{1}{2} \right)}^{n}} \right)=31\left( 1-{{\left( \dfrac{-1}{2} \right)}^{n}} \right) \\
& \Rightarrow 33-33{{\left( \dfrac{1}{2} \right)}^{n}}=31-31{{\left( \dfrac{-1}{2} \right)}^{n}} \\
\end{align}\]
\[\begin{align}
& \Rightarrow 33-31=33{{\left( \dfrac{1}{2} \right)}^{n}}-31{{\left( \dfrac{-1}{2} \right)}^{n}} \\
& \Rightarrow 2\times {{2}^{n}}=33{{(1)}^{n}}-31{{(-1)}^{n}} \\
& \Rightarrow {{2}^{n+1}}=33-31{{(-1)}^{n}} \\
& \Rightarrow {{2}^{n+1}}+31{{(-1)}^{n}}=33\text{ }...(1) \\
\end{align}\]
Then, substituting the given options for $n$ in (1), we get
If \[n=4;\] then
\[\begin{align}
& {{2}^{n+1}}+31{{(-1)}^{n}}={{2}^{4+1}}+31{{(-1)}^{4}} \\
& \text{ }={{2}^{5}}+31 \\
& \text{ =}32+31 \\
& \text{ =}63\ne 33 \\
\end{align}\]
Thus, the first option is incorrect.
If \[n=5;\] then
\[\begin{align}
& {{2}^{n+1}}+31{{(-1)}^{n}}={{2}^{5+1}}+31{{(-1)}^{5}} \\
& \text{ }={{2}^{6}}-31 \\
& \text{ }=64-31=33 \\
\end{align}\]
Thus, the required value of the number of terms in the given series is \[n=5\].
Option ‘B’ is correct
Note: Here, we have to substitute the given values of $n$ in the obtained equation, in order to get the correct value. Since the given series are in geometric progression, we can use the sum of $n$ terms formula for finding the required value.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

