
Let \[a,b\] and $c$ be three real numbers satisfying
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]......\left( E \right)\]
Let $b = 6$, with $a$ and $c$ satisfying $\left( E \right).$ If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $ is:
(A) 6
(B) 7
(C) $\dfrac{6}{7}$
(D) $\infty $
Answer
152.7k+ views
Hint: The multiplication of two matrices is possible if the no. of columns in matrix A is equal to the no. of rows in matrix B. Here we multiplied the two given matrix and form the equations by comparing the values of both sides.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since, $b = 6$, so the equations become
$
a + 8\left( 6 \right) + 7c = 0 \Rightarrow a + 7c = - 48....(1) \\
9a + 2\left( 6 \right) + 3c = 0 \Rightarrow 9a + 3c = - 12....(2) \\
a + 6 + c = 0 \Rightarrow a + c = - 6....(3) \\
$
On subtracting equation (3) from (1), we get
$a + 7c - \left( {a + c} \right) = - 48 - \left( { - 6} \right)$
$
\Rightarrow a + 7c - a - c = - 48 + 6 \\
\Rightarrow 6c = - 42 \\
\Rightarrow c = - 7 \\
$
Substitute the value of $c$ in equation (3), we get
$
a + \left( { - 7} \right) = - 6 \\
\Rightarrow a - 7 = - 6 \\
\Rightarrow a = - 6 + 7 \\
\Rightarrow a = 1 \\
$
So, we have $a = 1,b = 6,c = - 7$
Given quadratic equation is $a{x^2} + bx + c = 0$. After putting the values of \[a,b\] and $c$, it becomes ${x^2} + 6x - 7 = 0$.
Since, $\alpha $ and $\beta $ are the roots of this equation, So
Sum of roots, $\alpha + \beta = $$\dfrac{{ - b}}{a} = \dfrac{{ - 6}}{1} = - 6$
Multiplication of roots, $\alpha \beta = \dfrac{c}{a} = \dfrac{{ - 7}}{1} = - 7$
Now, $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{ - 6}}{{ - 7}}} \right)}^n}} $
$ = \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{6}{7}} \right)}^n}} $
On expand it, we get-
$ = {\left( {\dfrac{6}{7}} \right)^0} + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
$ = 1 + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
This is an infinite Geometric Progression, whose sum of infinite terms is given by
${S_\infty } = \dfrac{a}{{1 - r}}$
Where $a$ is the first term of G.P. and $r$ is the common ratio of G.P.
Here we have, $a = 1$and $r = \dfrac{6}{7}$
$\therefore $ $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $$ = \dfrac{1}{{1 - \dfrac{6}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{{7 - 6}}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{1}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = 7$
Hence, option (B) is the correct answer.
Note: If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then sum of roots, $\alpha + \beta = \dfrac{{ - b}}{a}$ and multiplication of roots, $\alpha \beta = \dfrac{c}{a}$. Also, the sum of infinite terms of an G.P. is ${S_\infty } = \dfrac{a}{{1 - r}}$.
Complete step-by-step answer:
Since, \[a,b\] and $c$ be three real numbers satisfies
\[\left[ {\begin{array}{*{20}{c}}
a&b&c
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&9&7 \\
8&2&7 \\
7&3&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&0&0
\end{array}} \right]\]
So, we get the equations
$
a + 8b + 7c = 0 \\
9a + 2b + 3c = 0 \\
7a + 7b + 7c = 0 \Rightarrow a + b + c = 0 \\
$
Since, $b = 6$, so the equations become
$
a + 8\left( 6 \right) + 7c = 0 \Rightarrow a + 7c = - 48....(1) \\
9a + 2\left( 6 \right) + 3c = 0 \Rightarrow 9a + 3c = - 12....(2) \\
a + 6 + c = 0 \Rightarrow a + c = - 6....(3) \\
$
On subtracting equation (3) from (1), we get
$a + 7c - \left( {a + c} \right) = - 48 - \left( { - 6} \right)$
$
\Rightarrow a + 7c - a - c = - 48 + 6 \\
\Rightarrow 6c = - 42 \\
\Rightarrow c = - 7 \\
$
Substitute the value of $c$ in equation (3), we get
$
a + \left( { - 7} \right) = - 6 \\
\Rightarrow a - 7 = - 6 \\
\Rightarrow a = - 6 + 7 \\
\Rightarrow a = 1 \\
$
So, we have $a = 1,b = 6,c = - 7$
Given quadratic equation is $a{x^2} + bx + c = 0$. After putting the values of \[a,b\] and $c$, it becomes ${x^2} + 6x - 7 = 0$.
Since, $\alpha $ and $\beta $ are the roots of this equation, So
Sum of roots, $\alpha + \beta = $$\dfrac{{ - b}}{a} = \dfrac{{ - 6}}{1} = - 6$
Multiplication of roots, $\alpha \beta = \dfrac{c}{a} = \dfrac{{ - 7}}{1} = - 7$
Now, $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)}^n}} $
=$\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{{ - 6}}{{ - 7}}} \right)}^n}} $
$ = \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{6}{7}} \right)}^n}} $
On expand it, we get-
$ = {\left( {\dfrac{6}{7}} \right)^0} + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
$ = 1 + {\left( {\dfrac{6}{7}} \right)^1} + {\left( {\dfrac{6}{7}} \right)^2} + {\left( {\dfrac{6}{7}} \right)^3} + ........................ + {\left( {\dfrac{6}{7}} \right)^n}$
This is an infinite Geometric Progression, whose sum of infinite terms is given by
${S_\infty } = \dfrac{a}{{1 - r}}$
Where $a$ is the first term of G.P. and $r$ is the common ratio of G.P.
Here we have, $a = 1$and $r = \dfrac{6}{7}$
$\therefore $ $\sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} $$ = \dfrac{1}{{1 - \dfrac{6}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{{7 - 6}}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = \dfrac{1}{{\dfrac{1}{7}}}$
$ \Rightarrow \sum\limits_{n = 0}^\infty {{{\left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)}^n}} = 7$
Hence, option (B) is the correct answer.
Note: If $\alpha $ and $\beta $ are the roots of the quadratic equation $a{x^2} + bx + c = 0$, then sum of roots, $\alpha + \beta = \dfrac{{ - b}}{a}$ and multiplication of roots, $\alpha \beta = \dfrac{c}{a}$. Also, the sum of infinite terms of an G.P. is ${S_\infty } = \dfrac{a}{{1 - r}}$.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Advanced 2025 Revision Notes for Practical Organic Chemistry

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
