
Let \[A = \left\{ {1,2,3,4,5} \right\}\]; \[B = \left\{ {2,3,6,7} \right\}\].Find the number of elements in \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\].
A. 18
B. 6
C. 4
D. 0
Answer
219k+ views
Hint First we will find \[A \times B\] and \[B \times A\]. To find \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\], we will find the common ordered pairs in \[A \times B\] and \[B \times A\]. Then we will find the number of ordered pairs in \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\].
Formula used
\[A \times B = \left\{ {\left( {a,b} \right):a \in A,b \in B} \right\}\]
Complete step by step solution
Given that, \[A = \left\{ {1,2,3,4,5} \right\}\]; \[B = \left\{ {2,3,6,7} \right\}\].
Now we will calculate \[A \times B\].
\[A \times B = \left\{ {\left( {1,2} \right),\left( {1,3} \right),\left( {1,6} \right),\left( {1,7} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,6} \right),\left( {2,7} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,6} \right),\left( {3,7} \right),\left( {4,2} \right),\left( {4,3} \right),\left( {4,6} \right),\left( {4,7} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {5,6} \right),\left( {5,7} \right)} \right\}\]
Now calculate \[B \times A\].
\[B \times A = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {6,1} \right),\left( {6,2} \right),\left( {6,3} \right),\left( {6,4} \right),\left( {6,5} \right),\left( {7,1} \right),\left( {7,2} \right),\left( {7,3} \right),\left( {7,4} \right),\left( {7,5} \right)} \right\}\]
Now finding the common ordered pairs:
The common ordered pairs are \[\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)\].
Now we calculate \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\]:
\[\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\}\]
The number of ordered pairs in \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
The number of elements of \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
Hence the correct option is C
Note We can write \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] as \[\left( {A \cap B} \right) \times \left( {B \cap A} \right)\]. Then \[\left( {A \cap B} \right) = \left\{ {2,3} \right\}\] and \[\left( {B \cap A} \right) = \left\{ {2,3} \right\}\]. So, \[\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\}\]. So the number of elements of \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
Formula used
\[A \times B = \left\{ {\left( {a,b} \right):a \in A,b \in B} \right\}\]
Complete step by step solution
Given that, \[A = \left\{ {1,2,3,4,5} \right\}\]; \[B = \left\{ {2,3,6,7} \right\}\].
Now we will calculate \[A \times B\].
\[A \times B = \left\{ {\left( {1,2} \right),\left( {1,3} \right),\left( {1,6} \right),\left( {1,7} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,6} \right),\left( {2,7} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,6} \right),\left( {3,7} \right),\left( {4,2} \right),\left( {4,3} \right),\left( {4,6} \right),\left( {4,7} \right),\left( {5,2} \right),\left( {5,3} \right),\left( {5,6} \right),\left( {5,7} \right)} \right\}\]
Now calculate \[B \times A\].
\[B \times A = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {2,4} \right),\left( {2,5} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right),\left( {3,4} \right),\left( {3,5} \right),\left( {6,1} \right),\left( {6,2} \right),\left( {6,3} \right),\left( {6,4} \right),\left( {6,5} \right),\left( {7,1} \right),\left( {7,2} \right),\left( {7,3} \right),\left( {7,4} \right),\left( {7,5} \right)} \right\}\]
Now finding the common ordered pairs:
The common ordered pairs are \[\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)\].
Now we calculate \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\]:
\[\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\}\]
The number of ordered pairs in \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
The number of elements of \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
Hence the correct option is C
Note We can write \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] as \[\left( {A \cap B} \right) \times \left( {B \cap A} \right)\]. Then \[\left( {A \cap B} \right) = \left\{ {2,3} \right\}\] and \[\left( {B \cap A} \right) = \left\{ {2,3} \right\}\]. So, \[\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right),\left( {2,3} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\}\]. So the number of elements of \[\left( {A \times B} \right) \cap \left( {B \times A} \right)\] is 4.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

