
How do you know if a parabola is positive or negative?
Answer
216.3k+ views
Hint In this question we have to find when the parabola is positive and when the parabola is negative. It depends on the open side of the parabola.
Complete step by step solution:
There are two types of patterns of the parabola. The first type is a horizontal parabola. The second type of parabola is a vertical parabola.
In the horizontal parabola, the parabola is opened to either the right side or the left side.
In the vertical parabola, the parabola is opened either upward or downward direction.
The standard equation of a horizontal parabola is \[x = a{\left( {y - k} \right)^2} + h\] where \[\left( {h,k} \right)\]is the vertex of the parabola and the focus is \[\left( {h,k + \dfrac{1}{{4a}}} \right)\].
The standard equation of a vertical parabola is \[y = a{\left( {x - h} \right)^2} + k\] where \[\left( {h,k} \right)\]is the vertex of the parabola and the focus is \[\left( {h + \dfrac{1}{{4a}},k} \right)\].
The positive and negative of a parabola depends on the value of \[a\].
Case I:
The diagram of the parabola whose equation is \[x = a{\left( {y - k} \right)^2} + h\] where \[a > 0\]

Image: Horizontal parabola
The parabola is positive if it is opened to the right side.
Case II:
The diagram of the parabola whose equation is \[x = a{\left( {y - k} \right)^2} + h\] where \[a < 0\]

Image: Horizontal parabola
The horizontal parabola is negative if it is opened to the left side.
Case III:
The diagram of the parabola whose equation is \[y = a{\left( {x - h} \right)^2} + k\] where \[a > 0\]
Image: Vertical parabola
The parabola is positive if it is opened upward direction.
Case IV:
The diagram of the parabola whose equation is \[y = a{\left( {x - h} \right)^2} + k\] where \[a < 0\].

When the parabola is opened in a downward direction, then the parabola is negative.
Hence the parabola is negative when it opens to either the left direction or downward direction.
Note: Sometimes students do not consider the horizontal parabola. This gives an incomplete solution. There are 4 types of parabolas. There are 2 horizontal parabolas and 2 vertical parabolas. When the parabola opens to the right side or upward direction, then the parabola is known as a positive parabola.
Complete step by step solution:
There are two types of patterns of the parabola. The first type is a horizontal parabola. The second type of parabola is a vertical parabola.
In the horizontal parabola, the parabola is opened to either the right side or the left side.
In the vertical parabola, the parabola is opened either upward or downward direction.
The standard equation of a horizontal parabola is \[x = a{\left( {y - k} \right)^2} + h\] where \[\left( {h,k} \right)\]is the vertex of the parabola and the focus is \[\left( {h,k + \dfrac{1}{{4a}}} \right)\].
The standard equation of a vertical parabola is \[y = a{\left( {x - h} \right)^2} + k\] where \[\left( {h,k} \right)\]is the vertex of the parabola and the focus is \[\left( {h + \dfrac{1}{{4a}},k} \right)\].
The positive and negative of a parabola depends on the value of \[a\].
Case I:
The diagram of the parabola whose equation is \[x = a{\left( {y - k} \right)^2} + h\] where \[a > 0\]

Image: Horizontal parabola
The parabola is positive if it is opened to the right side.
Case II:
The diagram of the parabola whose equation is \[x = a{\left( {y - k} \right)^2} + h\] where \[a < 0\]

Image: Horizontal parabola
The horizontal parabola is negative if it is opened to the left side.
Case III:
The diagram of the parabola whose equation is \[y = a{\left( {x - h} \right)^2} + k\] where \[a > 0\]

Image: Vertical parabola
The parabola is positive if it is opened upward direction.
Case IV:
The diagram of the parabola whose equation is \[y = a{\left( {x - h} \right)^2} + k\] where \[a < 0\].

When the parabola is opened in a downward direction, then the parabola is negative.
Hence the parabola is negative when it opens to either the left direction or downward direction.
Note: Sometimes students do not consider the horizontal parabola. This gives an incomplete solution. There are 4 types of parabolas. There are 2 horizontal parabolas and 2 vertical parabolas. When the parabola opens to the right side or upward direction, then the parabola is known as a positive parabola.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

