
What is kinetic energy at infinity?
Answer
162.6k+ views
Hint: Since the problem is based on the kinetic energy at infinity, consider the effect of gravitational force and escape velocity on the kinetic energy of the body at an infinite distance. As we all know that the parameters vary with each other hence, analyse every aspect of the solution needed for the question and then present the answer with a proper explanation.
Formula used:
The expression of gravitational force is,
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where,
F = Gravitational force between two bodies
${m_1}$ and ${m_2}$ are the masses of two bodies
r = distance between the centres of ${m_1}$ and ${m_2}$
G = Universal Gravitational Constant
Complete step by step solution:
We know that, the magnitude of gravitational force, according to Newton, is:
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$ where,
It clearly suggests that $F$ is inversely proportional to ${r^2}$ which means as $r \to \infty $, the gravitational pull of attraction $F$ is significantly reduced (although it never reaches to zero).
Also, we know Escape Velocity is the minimum required velocity needed to escape from earth’s gravitation which is equal to $11.2\,km/s$ . That means once the escape velocity is reached, no more energy is required to escape from earth’s gravitation i.e., $E = K.E. + P.E. = 0$. Thus, at an infinite distance, both the kinetic & potential energy is zero and a body can escape from earth’s gravitation at this point.
Hence, the kinetic energy at infinity is zero.
Note: This is a theoretical-based problem hence, it is essential that the given question is to be analysed very carefully to give a precise explanation. While writing a solution, support your explanation by providing proper reasons such as the escape velocity and correlate the terms used with each other that might help in the solution.
Formula used:
The expression of gravitational force is,
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where,
F = Gravitational force between two bodies
${m_1}$ and ${m_2}$ are the masses of two bodies
r = distance between the centres of ${m_1}$ and ${m_2}$
G = Universal Gravitational Constant
Complete step by step solution:
We know that, the magnitude of gravitational force, according to Newton, is:
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$ where,
It clearly suggests that $F$ is inversely proportional to ${r^2}$ which means as $r \to \infty $, the gravitational pull of attraction $F$ is significantly reduced (although it never reaches to zero).
Also, we know Escape Velocity is the minimum required velocity needed to escape from earth’s gravitation which is equal to $11.2\,km/s$ . That means once the escape velocity is reached, no more energy is required to escape from earth’s gravitation i.e., $E = K.E. + P.E. = 0$. Thus, at an infinite distance, both the kinetic & potential energy is zero and a body can escape from earth’s gravitation at this point.
Hence, the kinetic energy at infinity is zero.
Note: This is a theoretical-based problem hence, it is essential that the given question is to be analysed very carefully to give a precise explanation. While writing a solution, support your explanation by providing proper reasons such as the escape velocity and correlate the terms used with each other that might help in the solution.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
